doubling down

ExxonMobil invests over $200M in Texas advanced recycling sites

The investment plans to add 350 million pounds per year of advanced recycling capacity at Baytown and Beaumont, which will bring ExxonMobil’s total capacity to 500 million pounds annually. Photo via ExxonMobil.com

ExxonMobil announced that it plans to invest more than $200 million to expand its advanced recycling operations at its Baytown and Beaumont sites that are expected to start in 2026. The new operations can help increase advanced recycling rates and divert plastic from landfills, according to ExxonMobil.

“We are solutions providers, and this multi-million-dollar investment will enhance our ability to convert hard-to-recycle plastics into raw materials that produce valuable new products,” says Karen McKee, president of ExxonMobil Product Solutions, in a news release.

The investment plans to add 350 million pounds per year of advanced recycling capacity at Baytown and Beaumont, which will bring ExxonMobil’s total capacity to 500 million pounds annually. The first Baytown facility started in 2022 and represents one of the largest advanced recycling facilities in North America by having processed more than 70 million pounds of plastic waste.

“At our Baytown site, we’ve proven advanced recycling works at scale, which gives us confidence in our ambition to provide the capacity to process more than 1 billion pounds of plastic per year around the world,” McKee said in a news release. “We’re proud of this proprietary technology and the role it can play in helping establish a circular economy for plastics and reducing plastic waste.”

Advanced recycling works by transforming plastic waste into raw materials that can be used to make products from fuels to lubricants to high-performance chemicals and plastics. Advanced recycling allows for a broader range of plastic waste that won't be mechanically recycled and may otherwise be buried or burned.

ExxonMobil will continue development of additional advanced recycling projects at manufacturing sites in North America, Europe and Asia with the goal of reaching 1 billion pounds per year of recycling capacity by 2027.

Trending News

A View From HETI

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

Trending News