best of class

10 Houston energy companies recognized as best workplaces on annual list

Chevron — as well as nine other Houston energy companies — was named a top company by Newsweek. Photo via chevron.com

Newsweek recently recognized the country's top workplaces, and 10 Houston energy businesses made the cut.

The annual America's Greatest Workplaces 2023 list, which originally published in the fall, gave 10 Houston energy companies four stars or above.

ConocoPhillips is the only Houston-based energy company to receive five out of five stars. Baker Hughes, Exxon, S&B Engineers and Constructors, and KBR all received four-and-a-half stars. Chevron Corp., Halliburton, J-W Power Co., Q'MAX Solutions, and Valerus secured four stars each.

"Our commitment to engaging the full potential of our people to deliver the future of energy is at the core of everything we do," Rhonda Morris, vice president and chief human resources officer at Chevron, says in a news release. "We do this because our business succeeds best when our employees feel engaged and empowered, and we look forward to building on this momentum for years to come.”

The ranking identified the top 1,000 companies in the United States and is based off of a large employer survey, as well as a a sample set of over 61,000 respondents living and working in the U.S. In total, Newsweek factored in 389,000 company reviews across all industry sectors. The report was in partnership with Plant-A.

"In an economic climate where the job market remains competitive despite fears of a recession, employers who stand out as America's Greatest Workplaces may find they have substantial advantages over their competitors," writes Nancy Cooper, editor of Newsweek, about the report.

Trending News

A View From HETI

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Trending News