The politicians point to a recent Texas merger. Photo via Getty Images

Senate Majority Leader Chuck Schumer and 22 other Democratic senators are calling on the Department of Justice to “use every tool” at its disposal to prevent and prosecute alleged collusion and price-fixing in the oil industry.

In a letter Thursday to Attorney General Merrick Garland and other officials, the Democrats said a recent Federal Trade Commission investigation into a high-profile merger uncovered evidence of price-fixing by oil executives that led to higher energy costs for American families and businesses.

The FTC said earlier this month that Scott Sheffield, the former CEO of Texas-based Pioneer Natural Resources, colluded with OPEC and OPEC+ to potentially raise crude oil prices. Sheffield retired from the company in 2016 but returned as CEO in 2019. After retiring again in 2023, he continued to serve on its board.

The FTC cleared Houston-based ExxonMobil's $60 billion deal to buy Pioneer on May 2 but barred Sheffield from joining the new company’s board of directors. Pioneer, which is based in Dallas, said it disagreed with the allegations but would not impede closing of the merger, which was announced in 2023.

In a report, the FTC said collusion by Pioneer and others may have cost the average American household up to $500 per car in increased annual fuel costs, an amount Democrats called “an unwelcome tax that is particularly burdensome for lower-income families.'' Meanwhile, Exxon Mobil and other major oil companies collectively earned more than $300 billion in profits over the last two years, "a surge that many market experts believe cannot be explained away by increased production costs from the (coronavirus) pandemic or inflation,” Democrats said.

The letter calls for the Justice Department to launch an industry-wide investigation into possible violations of the Sherman Antitrust Act. It outlined how “Big Oil’s alleged collusion with OPEC is a national security concern that aids countries looking to undermine the U.S.," including Russia and Iran.

“Corporate malfeasance must be confronted, or it will proliferate," the letter said. “These alleged offenses do not simply enrich corporations; hardworking Americans end up paying the price through higher costs for gas, fuel and related consumer products. The DOJ must protect consumers, small businesses and the public from petroleum-market collusion."

The letter by Senate Democrats was the latest in a series of partisan actions targeting the oil industry.

Separately, Democratic Sen. Sheldon Whitehouse of Rhode Island and Democratic Rep. Jamie Raskin of Maryland have formally asked the Justice Department to investigate whether Exxon, Chevron and other oil companies misled the public over decades about the climate effects of burning fossil fuels. Whitehouse and Raskin led a multiyear investigation that uncovered what they described as “damning new documents that exposed the fossil fuel industry’s ongoing efforts to deceive the public and block climate action.”

Republicans, meanwhile, have attacked President Joe Biden's energy policies, including a freeze on liquefied natural gas exports, restrictions on new oil and gas leasing on a petroleum reserve in Alaska and a decision to charge companies higher rates to drill for oil and natural gas on federal lands.

Sen. John Barrasso, the top Republican on the Senate Energy Committee, said the Democratic president was “doing all he can to make it economically impossible to produce energy on federal lands.''

The letter released Thursday was signed by 23 Democrats, including Schumer, Whitehouse, Senate Commerce Committee Chairwoman Maria Cantwell of Washington state and Senate Judiciary Committee Chairman Dick Durbin of Illinois.

Chevron — as well as nine other Houston energy companies — was named a top company by Newsweek. Photo via chevron.com

10 Houston energy companies recognized as best workplaces on annual list

best of class

Newsweek recently recognized the country's top workplaces, and 10 Houston energy businesses made the cut.

The annual America's Greatest Workplaces 2023 list, which originally published in the fall, gave 10 Houston energy companies four stars or above.

ConocoPhillips is the only Houston-based energy company to receive five out of five stars. Baker Hughes, Exxon, S&B Engineers and Constructors, and KBR all received four-and-a-half stars. Chevron Corp., Halliburton, J-W Power Co., Q'MAX Solutions, and Valerus secured four stars each.

"Our commitment to engaging the full potential of our people to deliver the future of energy is at the core of everything we do," Rhonda Morris, vice president and chief human resources officer at Chevron, says in a news release. "We do this because our business succeeds best when our employees feel engaged and empowered, and we look forward to building on this momentum for years to come.”

The ranking identified the top 1,000 companies in the United States and is based off of a large employer survey, as well as a a sample set of over 61,000 respondents living and working in the U.S. In total, Newsweek factored in 389,000 company reviews across all industry sectors. The report was in partnership with Plant-A.

"In an economic climate where the job market remains competitive despite fears of a recession, employers who stand out as America's Greatest Workplaces may find they have substantial advantages over their competitors," writes Nancy Cooper, editor of Newsweek, about the report.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

10+ exciting energy breakthroughs made by Houston teams in 2025

Year In Review

Editor's note: As 2025 comes to a close, we're revisiting the biggest headlines and major milestones of the energy sector this year. Here are the most exciting scientific breakthroughs made by Houstonians this year that are poised to shape the future of energy:

Rice University team develops eco-friendly method to destroy 'forever chemicals' in water

Rice University researchers have developed a new method for removing PFAS from water that works 100 times faster than traditional filters. Photo via Rice University.

Rice University researchers have teamed up with South Korean scientists to develop the first eco-friendly technology that captures and destroys toxic “forever chemicals,” or PFAS, in water. The Rice-led study centered on a layered double hydroxide (LDH) material made from copper and aluminum that could rapidly capture PFAS and be used to destroy the chemicals.

UH researchers make breakthrough in cutting carbon capture costs

UH carbon capture cost cutting

A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants. Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team first introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process.The second breakthrough displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge.

Houston team’s discovery brings solid-state batteries closer to EV use

Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images.

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape. Their work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

Houston researchers make breakthrough on electricity-generating bacteria

A team of Rice researchers, including Caroline Ajo-Franklin and Biki Bapi Kundu, has uncovered how certain bacteria breathe by generating electricity. Photo by Jeff Fitlow/Rice University.

Research from Rice University that merges biology with electrochemistry has uncovered new findings on how some bacteria generate electricity. Research showed how some bacteria use compounds called naphthoquinones, rather than oxygen, to transfer electrons to external surfaces in a process known as extracellular respiration. In other words, the bacteria are exhale electricity as they breathe. This process has been observed by scientists for years, but the Rice team's deeper understanding of its mechanism is a major breakthrough, with implications for the clean energy and industrial biotechnology sectors, according to the university.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A study from researchers at Rice University could lead to future advances in superconductors with the potential to transform energy use. The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials. The materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

UH researchers develop breakthrough material to boost efficiency of sodium-ion batteries

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance. The Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. This material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

Houston researchers make headway on developing low-cost sodium-ion batteries

Houston researchers make headway on developing low-cost sodium-ion batteries

Rice's Atin Pramanik and a team in Pulickel Ajayan's lab shared new findings that offer a sustainable alternative to lithium batteries by enhancing sodium and potassium ion storage. Photo by Jeff Fitlow/Courtesy Rice University

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries. The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

Houston scientists develop 'recharge-to-recycle' reactor for lithium-ion batteries

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock. The findings demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing. The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs.

Houston researchers develop strong biomaterial that could replace plastic

A team led by M.A.S.R. Saadi and Muhammad Maksud Rahman has developed a biomaterial that they hope could be used for the “next disposable water bottle." Photo courtesy Rice University.

Collaborators from two Houston universities are leading the way in engineering a biomaterial into a scalable, multifunctional material that could potentially replace plastic. The study introduced a biosynthesis technique that aligns bacterial cellulose fibers in real-time, which resulted in robust biopolymer sheets with “exceptional mechanical properties.” Ultimately, the scientists hope this discovery could be used for the “next disposable water bottle,” which would be made by biodegradable biopolymers in bacterial cellulose, an abundant resource on Earth. Additionally, the team sees applications for the materials in the packaging, breathable textiles, electronics, food and energy sectors.

Houston researchers reach 'surprising' revelation in materials recycling efforts

A team led by Matteo Pasquali, director of Rice’s Carbon Hub, has unveiled how carbon nanotube fibers can be a sustainable alternative to materials like steel, copper and aluminum. Photo by Jeff Fitlow/ Courtesy Rice University

Researchers at Rice University have demonstrated how carbon nanotube (CNT) fibers can be fully recycled without any loss in their structure or properties. The discovery shows that CNT fibers could be used as a sustainable alternative to traditional materials like metals, polymers and the larger, harder-to-recycle carbon fibers, which the team hopes can pave the way for more sustainable and efficient recycling efforts.

UH lands $1M NSF grant to train future critical minerals workforce

workforce pipeline

The University of Houston has launched a $1 million initiative funded by the National Science Foundation to address the gap in the U.S. mineral industry and bring young experts to the field.

The program will bring UH and key industry partners together to expand workforce development and drive research that fuels innovation. It will be led by Xuqing "Jason" Wu, an associate professor of information science technology.

“The program aims to reshape public perception of the critical minerals industry, highlighting its role in energy, defense and advanced manufacturing,” Wu said in a news release. “Our program aims to showcase the industry’s true, high-tech nature.”

The project will sponsor 10 high school students and 10 community college students in Houston each year. It will include industry mentors and participation in a four-week training camp that features “immersive field-based learning experiences.”

“High school and community college students often lack exposure to career pathways in mining, geoscience, materials science and data science,” Wu added in the release. “This project is meant to ignite student interest and strengthen the U.S. workforce pipeline in the minerals industry by equipping students with technical skills, industry knowledge and career readiness.”

This interdisciplinary initiative will also work with co-principal investigators across fields at UH:

  • Jiajia Sun, Earth & Atmospheric Sciences
  • Yan Yao and Jiefu Chen, Electrical and Computer Engineering
  • Yueqin Huang, Information Science Technology

According to UH, minerals and rare earth elements have become “essential building blocks of modern life” and are integral components in technology and devices, roads, the energy industry and more.