A team of Texas researchers has landed a nearly $1 million NSF grant to address rural flood management challenges with community input. Photo via Getty Images.

A team from Rice University, the University of Texas at Austin and Texas A&M University have been awarded a National Science Foundation grant under the CHIRRP—or Confronting Hazards, Impacts and Risks for a Resilient Planet—program to combat flooding hazards in rural Texas.

The grant totals just under $1 million, according to a CHIRRP abstract.

The team is led by Avantika Gori, assistant professor of civil and environmental engineering at Rice. Other members include Rice’s James Doss-Gollin, Andrew Juan at Texas A&M University and Keri Stephens at UT Austin.

Researchers from Rice’s Severe Storm Prediction, Education and Evacuation from Disasters Center and Ken Kennedy Institute, Texas A&M’s Institute for A Disaster Resilient Texas and the Technology & Information Policy Institute at UT Austin are part of the team as well.

Their proposal includes work that introduces a “stakeholder-centered framework” to help address rural flood management challenges with community input.

“Our goal is to create a flood management approach that truly serves rural communities — one that’s driven by science but centers around the people who are impacted the most,” Gori said in a news release.

The project plans to introduce a performance-based system dynamics framework that integrates hydroclimate variability, hydrology, machine learning, community knowledge, and feedback to give researchers a better understanding of flood risks in rural areas.

The research will be implemented in two rural Texas areas that struggle with constant challenges associated with flooding. The case studies aim to demonstrate how linking global and regional hydroclimate variability with local hazard dynamics can work toward solutions.

“By integrating understanding of the weather dynamics that cause extreme floods, physics-based models of flooding and AI or machine learning tools together with an understanding of each community’s needs and vulnerabilities, we can better predict how different interventions will reduce a community’s risk,” Doss-Gollin said in a news release.

At the same time, the project aims to help communities gain a better understanding of climate science in their terms. The framework will also consider “resilience indicators,” such as business continuity, transportation access and other features that the team says more adequately address the needs of rural communities.

“This work is about more than flood science — it’s also about identifying ways to help communities understand flooding using words that reflect their values and priorities,” said Stephens. “We’re creating tools that empower communities to not only recover from disasters but to thrive long term.”

From potato-starch-based bioplastics startups to companies developing carbon-coated silicon anodes, here's who's joining Greentown Labs and Browning the Green Space's ACCEL program. Photo via browningthegreenspace.org

2 Houston startups join Greentown Labs' BIPOC-led accelerator program

seeing green

Greentown Labs and Browning the Green Space announced the newest cohort for its Advancing Climatetech and Clean Energy Leaders Program, or ACCEL, which works to advance BIPOC-led startups in the climatetech space.

Two Houston companies and one from Austin are among the eight startups to be named to the 2025 group.

“The startups selected for the third ACCEL cohort represent a phenomenal range of energy and climatetech innovations, which underscores our belief that everyone and many solutions must play a role in our community’s collective decarbonization efforts,” Georgina Campbell Flatter, Greentown’s new CEO, said in a release. “We’re proud to welcome these entrepreneurs to our community and eager to see all they’ll achieve throughout the program and beyond!”

Each of the early-stage startups within the cohort will receive $25,000 in non-dilutive grant funding and participate in the year-long program focused on product and technology development, market development, fundraising and management, and team development, according to Greentown. The curriculum is led by VentureWell, a nonprofit with expertise in venture development in climatetech.

The Houston companies include:

  • Carbonext, founded by Olanrewaju Tanimola. The company is leveraging its proprietary, off-the-shelf 3D-graphene technology to develop integrated solutions with carbon-coated silicon anodes to address challenges in the graphite ecosystem, as well as lithium-battery anodes.
  • PLASENE, founded by Sohel Shaikh, Alper Gulludag and Romolo Raciti. The company offers an innovative platform that converts plastic waste into liquid fuel and low-carbon hydrogen through its proprietary catalysts and modular, scalable, pre-engineered units

The remaining six companies are:

  • Inductive Robotics, founded in Austin by Madhav Ayyagari and David Alspaugh. The startup deploys autonomous robots that deliver EV charging directly to parked vehicles in commercial parking facilities, using a subscription-based model.
  • Andros Innovations, founded in Cambridge, Massachusetts by Laron Burrows. The startup has developed a reactor that produces ammonia more cheaply, cleanly and safely than traditional methods do.
  • FAST Metals, founded in Worcester, Massachusetts by Sumedh Gostu and Anthony Staley. It has developed a hydrometallurgical-recovery process capable of extracting iron, aluminum, scandium, titanium, and other rare-earth elements from industrial tailings.
  • Respire Energy, founded in Boston by Dave Hsu, Xiaowei Teng, and Candy Wong. The energy storage startup has developed a safe, low-cost, and long-duration metal-air battery designed for microgrids.
  • Tato Labs, founded in Brooklyn by Mecca McDonald and Mia Dunn. It is developing scalable, innovative, bioplastic products and packaging solutions that leverage potato starch, protect and preserve the natural ecosystem, and minimize plastic waste.
  • Thola, founded in Portland, Maine, by Nneile Nkholise and Lerato Takana. The company provides an on-demand marketplace for commercial-building sustainability and safety management, with a mission to decarbonize old buildings.

ACCEL is supported by the Massachusetts Clean Energy Center (MassCEC), Shell, Equinor, the Growth Capital Division of MassDevelopment, Microsoft and the Barr Foundation.

The accelerator has supported 13 early-stage startups since it was founded in 2023, resulting in $325,000 in grant funding. Houston companies have been represented in each cohort. Click here to see the 2024 cohort and here to see the inaugural 2023 cohort.

Bayport HRS will be an innovative pipeline-based hydrogen refueling station. Photo via Getty Images

Port Houston receives $25 million grant for Bayport hydrogen project

The Port of Houston Authority (Port Houston) received a $25 million grant from The Department of Transportation and the Federal Highway Administration this month to go toward a hydrogen fueling station for heavy-duty trucks in Bayport, known as Bayport HRS.

The funds will also support a public-private collaboration between the port and industrial gas company Linde Inc. with additional partners GTI Energy, Argonne National Laboratory and Center for Houston’s Future, according to a statement.

“The Houston Ship Channel is the busiest waterway in the nation,” Charlie Jenkins, Port Houston CEO, said in the news release. “As one of the channel’s leading advocates, Port Houston is committed to fostering sustainability, resilience, collaboration, and quality of life for the community and nation we serve.”

Bayport HRS will be an innovative pipeline-based hydrogen refueling station (HRS), which will be able to offer high fueling throughput and be publicly accessible. Linde will design, construct, own and operate the new facility.

“Partnering with Linde, one of the largest hydrogen producers in the world and owner of a major pipeline complex that serves the Houston region, is in line with the Port’s strategy of engaging the Houston Ship Channel industry on projects that benefit the community, promote sustainability, decarbonization, and clean transportation,” Rich Byrnes, Port Houston chief infrastructure officer, said in the news release.

Bayport HRS supports the Port’s Sustainability Action Plan and its net-zero emissions goal by 2050. The project will also align with national strategies for clean hydrogen and transportation decarbonization.

Another goal of the collaboration is to support the U.S. National Blueprint for Transportation Decarbonization, the National Zero-Emission Freight Corridor Strategy, and U.S. National Clean H2 Strategy and Roadmap.

In 2024, Port Houston secured nearly $57M in grant funding in sustainability efforts.

"The Houston/Gulf Coast's regional clean hydrogen economy continues to gain momentum, including with announcements such as this,” Brett Perlman, managing director at the Center for Houston's Future, said in the news release. "We are excited to be part of this important work to build out a clean hydrogen transportation network. This is also another great example of collaboration among business, government and community to get things done."

A handful of startups will be selected for the third year of the ACCEL program put on by Greentown Labs and Browning the Green Space. Photo via greentownlabs.com

Greentown launches 3rd round of collaborative accelerator for energy tech founders of color

browning the green space

For the third year, Greentown Labs and Browning the Green Space have opened applications for ACCEL, a climatetech accelerator designed to bolster BIPOC-led companies.

The program, which is a year-long commitment providing opportunities across funding, networking connections, resources, and more, has applications open until January 7. Each selected company will receive non-dilutive grant funding up to $25,000, trainings from VentureWell, a desk and membership at Greentown Houston or Boston locations, a BGS membership, and more.

A handful of startups will be selected for the program, which is looking for companies at the two to four Technology Readiness Level (TRL) stage with a technology solution across agriculture, buildings, electricity, manufacturing, resiliency and adaptation, and transportation sectors.

“ACCEL has been amazing," Chidalu Onyenso, founder of Cambridge, Massachusetts-based EarthBond, a member of the 2022 cohort, writes on the website. "I’ve really enjoyed the membership and programming. I think it’s fantastic—if I met another Black or Brown founder focused on climatetech, I’d tell them to apply to this program, 100 percent.”

Earlier this year, the program — which is supported by the Massachusetts Clean Energy Center, Microsoft's Climate Innovation Fund, Equinor, Barr Foundationnamed seven companies to its second cohort and six to its inaugural batch in 2022. The 13 companies across two cohorts so far have received $325,000 in grant funding from the program.

"These BIPOC-led startups are developing climate technologies that will lead us to a more equitable and sustainable future," MassCEC CEO Dr. Emily Reichert, the former CEO of Greentown, said of the second cohort in a news release. "We want ALL climatetech innovators and entrepreneurs to thrive here in Massachusetts. We are proud to support the ACCEL accelerator, created and led by Greentown Labs and Browning the Green Space. The ACCEL program is helping us build a more diverse innovation ecosystem by breaking down barriers and expanding opportunities."

Interested and qualifying companies can apply online.

The grant, funded by the federal Inflation Reduction Act, will help promote cleaner air, reduced emissions, and green jobs. Photo via Getty Images

Port Houston secures $3M from EPA program to fund green initiatives, clean tech

money moves

Port Houston’s PORT SHIFT program is receiving nearly $3 million from the U.S. Environmental Protection Agency’s Clean Ports Program.

The grant, funded by the federal Inflation Reduction Act, will help promote cleaner air, reduced emissions, and green jobs.

“With its ambitious PORT SHIFT program, Houston is taking a bold step toward a cleaner, more sustainable future, and I’m proud to have helped make this possible by voting for the Inflation Reduction Act,” U.S. Rep. Sylvia Garcia says in a news release.

“PORT SHIFT is about more than moving cargo — it’s about building a port that’s prepared for the future and a community that’s healthier and stronger,” Garcia adds. “With investments in zero-emission trucks, cleaner cargo handling, workforce training, and community engagement, Port Houston is setting the standard for what ports across America can accomplish.”

Joaquin Martinez, a member of the Houston City Council, says one of the benefits of the grant will be ensuring power readiness for all seven wharves at the Bayport Container Terminal.

The Inflation Reduction Act allocated $3 billion to the EPA’s Clean Ports Program to fund zero-emission equipment and climate planning at U.S. ports.

University of Houston professor Xiaonan Shan and the rest of his research team are celebrating fresh funding from a federal grant. Photo via UH.edu

Houston scientists land $1M NSF funding for AI-powered clean energy project

A team of scientists from the University of Houston, in collaboration with Howard University in Washington D.C., has received a $1 million award from the National Science Foundation for a project that aims to automate the discovery of new clean-energy catalysts.

The project, dubbed "Multidisciplinary High-Performance Computing and Artificial Intelligence Enabled Catalyst Design for Micro-Plasma Technologies in Clean Energy Transition," aims to use machine learning and AI to improve the efficiency of catalysts in hydrogen generation, carbon capture and energy storage, according to UH.

“This research directly contributes to these global challenges,” Jiefu Chen, the principal investigator of the project and associate professor of electrical and computer engineering, said in a statement. “This interdisciplinary effort ensures comprehensive and innovative solutions to complex problems.”

Chen is joined by Lars Grabow, professor of chemical and biomolecular engineering; Xiaonan Shan, associate professor of electrical and computing engineering; and Xuquing Wu, associate professor of information science technology. Su Yan, an associate professor of electrical engineering and computer science at Howard University, is collaborating on the project.

The University of Houston team: Xiaonan Shan, associate professor electrical and computing engineering, Jiefu Chen, associate professor of electrical and computer engineering, Lars Grabow, professor of chemical and biomolecular engineering, and Xuquing Wu, associate professor of information science technology. Photo via UH.edu

The team will create a robotic synthesis and testing facility that will automate the experimental testing and verification process of the catalyst design process, which traditionally is slow-going. It will implement AI and advanced, unsupervised machine learning techniques, and have a special focus on plasma reactions.

The project has four main focuses, according to UH.

  1. Using machine learning to discover materials for plasma-assisted catalytic reactions
  2. Developing a model to simulate complex interactions to better understand microwave-plasma-assisted heating
  3. Designing catalysts supports for efficient microwave-assisted reactions
  4. Developing a bench scale reactor to demonstrate the efficiency of the catalysts support system

Additionally, the team will put the funding toward the development of a multidisciplinary research and education program that will train students on using machine learning for topics like computational catalysis, applied electromagnetics and material synthesis. The team is also looking to partner with industry on related projects.

“This project will help create a knowledgeable and skilled workforce capable of addressing critical challenges in the clean energy transition,” Grabow added in a statement. “Moreover, this interdisciplinary project is going to be transformative in that it advances insights and knowledge that will lead to tangible economic impact in the not-too-far future.”

This spring, UH launched a new micro-credential course focused on other applications for AI and robotics in the energy industry.

Around the same time, Microsoft's famous renowned co-founder Bill Gates spoke at CERAWeek to a standing-room-only crowd on the future of the industry. Also founder of Breakthrough Energy, Gates addressed the topic of AI.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”

Expert examines how far Texas has come in energy efficiency

Guest Column

Texas leads the nation in energy production, providing about one-fourth of the country’s domestically produced primary energy. It is also the largest energy-consuming state, accounting for about one-seventh of the nation’s total energy use, and ranks sixth among the states in per capita energy consumption.

However, because Texas produces significantly more energy than it consumes, it stands as the nation’s largest net energy supplier. October marked National Energy Awareness Month, so this is an ideal time to reflect on how far Texas has come in improving energy efficiency.

Progress in Clean Energy and Grid Resilience

Texas continues to lead the nation in clean energy adoption and grid modernization, particularly in wind and solar power. With over 39,000 MW of wind capacity, Texas ranks first in the country in wind-powered electricity generation, now supplying more than 10% of the state’s total electricity.

This growth was significantly driven by the Renewable Portfolio Standard (RPS), which requires utility companies to produce new renewable energy in proportion to their market share. Initially, the RPS aimed to generate 10,000 MW of renewable energy capacity by 2025. Thanks to aggressive capacity building, this ambitious target was reached much earlier than anticipated.

Solar energy is also expanding rapidly, with Texas reaching 16 GW of solar capacity as of April 2024. The state has invested heavily in large-scale solar farms and supportive policies, contributing to a cleaner energy mix.

Texas is working to integrate both wind and solar to create a more resilient and cost-effective grid. Efforts to strengthen the grid also include regulatory changes, winterization mandates, and the deployment of renewable storage solutions.

While progress is evident, experts stress the need for continued improvements to ensure grid reliability during extreme weather events, when we can’t rely on the necessities for these types of energy sources to thrive. To put it simply, the sun doesn’t always shine, and the wind doesn’t always blow.

Federal Funding Boosts Energy Efficiency

In 2024, Texas received $22.4 million, the largest share of a $66 million federal award, from the U.S. Department of Energy’s Energy Efficiency Revolving Loan Fund Capitalization Grant Program.

The goal of this funding is to channel federal dollars into local communities to support energy-efficiency projects through state-based loans and grants. According to the DOE, these funds can be used by local businesses, homeowners, and public institutions for energy audits, upgrades, and retrofits that reduce energy consumption.

The award will help establish a new Texas-based revolving loan fund modeled after the state’s existing LoanSTAR program, which already supports cost-effective energy retrofits for public facilities and municipalities. According to the Texas Comptroller, as of 2023, the LoanSTAR program had awarded more than 337 loans totaling over $600 million.

In addition to expanding the revolving loan model, the state plans to use a portion of the DOE funds to offer free energy audit services to the public. The grant program is currently under development.

Building on this momentum, in early 2025, Texas secured an additional $689 million in federal funding to implement the Home Energy Performance-Based, Whole House (HOMES) rebate program and the Home Electrification and Application Rebate (HEAR) program.

This investment is more than five times the state’s usual energy efficiency spending. Texas’s eight private Transmission and Distribution Utilities typically spend about $110 million annually on such measures. The state will have multiple years to roll out both the revolving loan and rebate programs.

However, valuable federal tax incentives for energy-efficient home improvements are set to expire on December 31, 2025, including:

  • The Energy Efficiency Home Improvement Credit allows homeowners to claim up to $3,200 per year in federal income tax credits, covering 30% of the cost of eligible upgrades, such as insulation, windows, doors, and high-efficiency heating and cooling systems.
  • The Residential Clean Energy Credit provides a 30% income tax credit for the installation of qualifying clean energy systems, including rooftop solar panels, wind turbines, geothermal heat pumps, and battery storage systems.

As these incentives wind down, the urgency grows for Texas to build on the positive gains from the past several years despite reduced federal funding. The state has already made remarkable strides in clean energy production, grid modernization, and energy-efficiency investments, but the path forward requires a strategic and inclusive approach to energy planning. Through ongoing state-federal collaboration, community-driven initiatives, and forward-looking policy reforms, Texas can continue its progress, ensuring that future energy challenges are met with sustainable and resilient solutions.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

Meta to buy all power from new ENGIE Texas solar farm

power purchase

Meta, the parent company of social media platform Facebook, has agreed to buy all of the power from a $900 million solar farm being developed near Abilene by Houston-based energy company ENGIE North America.

The 600-megawatt Swenson Ranch solar farm, located in Stonewall County, will be the largest one ever built in the U.S. by ENGIE. The solar farm is expected to go online in 2027.

Meta will use electricity generated by the solar farm to power its U.S. data centers. All told, Meta has agreed to purchase more than 1.3 gigawatts of renewable energy from four ENGIE projects in Texas.

“This project marks an important step forward in the partnership between our two companies and their shared desire to promote a sustainable and competitive energy model,” Paulo Almirante, ENGIE’s senior executive vice president of renewable and flexible power, said in a news release.

In September, ENGIE North America said it would collaborate with Prometheus Hyperscale, a developer of sustainable liquid-cooled data centers, to build data centers at ENGIE-owned renewable energy and battery storage facilities along the I-35 corridor in Texas. The corridor includes Austin, Dallas-Fort Worth, San Antonio and Waco.

The first projects under the ENGIE-Prometheus umbrella are expected to go online in 2026.

ENGIE and Prometheus said their partnership “brings together ENGIE's deep expertise in renewables, batteries, and energy management and Prometheus' highly efficient liquid-cooled data center design to meet the growing demand for reliable, sustainable compute capacity — particularly for AI and other high-performance workloads.”