From potato-starch-based bioplastics startups to companies developing carbon-coated silicon anodes, here's who's joining Greentown Labs and Browning the Green Space's ACCEL program. Photo via browningthegreenspace.org

Greentown Labs and Browning the Green Space announced the newest cohort for its Advancing Climatetech and Clean Energy Leaders Program, or ACCEL, which works to advance BIPOC-led startups in the climatetech space.

Two Houston companies and one from Austin are among the eight startups to be named to the 2025 group.

“The startups selected for the third ACCEL cohort represent a phenomenal range of energy and climatetech innovations, which underscores our belief that everyone and many solutions must play a role in our community’s collective decarbonization efforts,” Georgina Campbell Flatter, Greentown’s new CEO, said in a release. “We’re proud to welcome these entrepreneurs to our community and eager to see all they’ll achieve throughout the program and beyond!”

Each of the early-stage startups within the cohort will receive $25,000 in non-dilutive grant funding and participate in the year-long program focused on product and technology development, market development, fundraising and management, and team development, according to Greentown. The curriculum is led by VentureWell, a nonprofit with expertise in venture development in climatetech.

The Houston companies include:

  • Carbonext, founded by Olanrewaju Tanimola. The company is leveraging its proprietary, off-the-shelf 3D-graphene technology to develop integrated solutions with carbon-coated silicon anodes to address challenges in the graphite ecosystem, as well as lithium-battery anodes.
  • PLASENE, founded by Sohel Shaikh, Alper Gulludag and Romolo Raciti. The company offers an innovative platform that converts plastic waste into liquid fuel and low-carbon hydrogen through its proprietary catalysts and modular, scalable, pre-engineered units

The remaining six companies are:

  • Inductive Robotics, founded in Austin by Madhav Ayyagari and David Alspaugh. The startup deploys autonomous robots that deliver EV charging directly to parked vehicles in commercial parking facilities, using a subscription-based model.
  • Andros Innovations, founded in Cambridge, Massachusetts by Laron Burrows. The startup has developed a reactor that produces ammonia more cheaply, cleanly and safely than traditional methods do.
  • FAST Metals, founded in Worcester, Massachusetts by Sumedh Gostu and Anthony Staley. It has developed a hydrometallurgical-recovery process capable of extracting iron, aluminum, scandium, titanium, and other rare-earth elements from industrial tailings.
  • Respire Energy, founded in Boston by Dave Hsu, Xiaowei Teng, and Candy Wong. The energy storage startup has developed a safe, low-cost, and long-duration metal-air battery designed for microgrids.
  • Tato Labs, founded in Brooklyn by Mecca McDonald and Mia Dunn. It is developing scalable, innovative, bioplastic products and packaging solutions that leverage potato starch, protect and preserve the natural ecosystem, and minimize plastic waste.
  • Thola, founded in Portland, Maine, by Nneile Nkholise and Lerato Takana. The company provides an on-demand marketplace for commercial-building sustainability and safety management, with a mission to decarbonize old buildings.

ACCEL is supported by the Massachusetts Clean Energy Center (MassCEC), Shell, Equinor, the Growth Capital Division of MassDevelopment, Microsoft and the Barr Foundation.

The accelerator has supported 13 early-stage startups since it was founded in 2023, resulting in $325,000 in grant funding. Houston companies have been represented in each cohort. Click here to see the 2024 cohort and here to see the inaugural 2023 cohort.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas energy startup closes $200M round to fund first factory in the state

fresh funding

Base Power, an Austin-based startup that provides battery-powered home energy services and just entered the Houston market, has raised $200 million in series B funding.

The money will help finance the construction of Base Power’s first factory in Texas. A site for the factory hasn’t been announced. The cash will also go toward the national expansion of Base Power’s services.

Andreessen Horowitz, Lightspeed Venture Partners and Valor Equity Partners co-led the round, with participation from existing investors such as Thrive Capital, Altimeter, Terrain, and Trust.

As part of the fundraising, Lee Fixel of Addition and Antonio Gracias of Valor Equity Partners are joining Base Power’s board of directors.

Last year, the startup landed $68 million in a series A funding round.

Base Power, founded in 2023, specializes in developing battery storage for energy that it provides to residential customers. Its partners include homebuilder Lennar and the Bandera Electric Cooperative, which supplies power to customers in seven Hill Country counties. Earlier this year it began serving the Houston-area territory serviced by CenterPoint Energy.

“Our rapid expansion has allowed us to power up thousands of Texans in just a few months, while driving their energy costs down and power reliability up,” Zach Dell, co-founder and CEO of Base Power, says in a news release. “With this investment, we will continue to innovate on new grid solutions, establish our domestic manufacturing capabilities, and accelerate adoption nationally.”

Dell’s father is Austin tech billionaire Michael Dell. He founded the company with Justin Lopas.

Houston cleantech company expands into China with hydrogen energy pilot

going global

Hydrogen-based clean energy technology company HNO International has announced its first foray into the Chinese market.

The company, which is building a state-of-the-art hydrogen production and refueling facility in Katy, has entered into an agreement with renewable energy company Zhuhai Topower New Energy Co., according to a release. This initiative includes a pilot deployment of HNOI’s Scalable Hydrogen Energy Platform, or SHEP, in China.

“Partnering with Zhuhai Topower represents a significant milestone in our mission to expand the global reach of our hydrogen production and refueling solutions,” Don Owens, Chairman and CEO of HNO International, said in the news release.

The collaboration plans to use HNO’s innovative SHEP technology to install hundreds of low-cost modular hydrogen production and refueling infrastructure projects, according to the company. HNO’s SHEP hydrogen energy system is known to require less than 3,000 square feet of space to operate while producing 5,000 kilograms of hydrogen per day.

Both companies plan to set a precedent for scalable and sustainable energy solutions in China.

Zhuhai Topower has investments totaling $340.63 million in new energy holdings for power generation, including a 100-megawatt wind power project and a 50-megawatt photovoltaic power generation project.

“This collaboration not only underscores the versatility of our SHEP technology, but also aligns with our commitment to supporting sustainable energy initiatives worldwide,” Owens added in the news release.

Rice University and UH labs team up to improve emerging carbon capture technique

new findings

A team of researchers led by professors from two Houston universities has discovered new methods that help stabilize an emerging technique known as carbon dioxide reduction reaction, or CO2RR, that is used for carbon capture and utilization processes.

The team led by Rice University’s Haotian Wang, associate professor in chemical and biomolecular engineering, and Xiaonan Shan, associate professor of electrical and computer engineering at University of Houston, published its findings in a recent edition of the journal Nature Energy.

CO2RR is an emerging carbon capture and utilization technique where electricity and chemical catalysts are used to convert carbon dioxide gas into carbon-containing compounds like alcohols, ethylene, formic acids or carbon monoxide, according to a news release from Rice. The result can be used as fuels, chemicals or as starting materials to produce other compounds.

The technology is used in commercial membrane electrode assembly (MEA) electrolyzers to convert carbon dioxide into valuable compounds, but the technology isn’t perfected. A significant challenge in CO2RR technology has been the accumulation of bicarbonate salt crystals on the backside of the cathode gas diffusion electrode and within the gas flow channels. The salt precipitates block the flow of carbon dioxide gas through the cathode chamber, which reduce the performance and can cause a failure of the electrolyzers.

The goal in the study was to understand why and how bicarbonate salts form during this reaction. The Rice and UH teams worked together using operando Raman spectroscopy, which is a technique that allows researchers to study the structure of materials and any precipitates that adhere to them while the device is functioning.

“By utilizing operando Raman spectroscopy and optical microscopy, we successfully tracked the movement of bicarbonate-containing droplets and identified their migration pattern,” Shan said in the release. “This provided us the information to develop an effective strategy to manage these droplets without interrupting system stability.”

Next, the team worked to prevent the salt crystals from forming. First, they tested lowering the concentration of cations, like sodium or potassium, in the electrolyte to slow down the salt formation. This method proved to be effective.

They also coated the cathode with parylene, a synthetic polymer that repels water, like Teflon, which also notably improved the stability of the electrolyzer and prevented salt accumulation.

“Inspired by the waxy surface of the lotus leaf which causes water droplets to bead up and roll off, carrying off any dirt particles with it and leaving the leaf’s surface clean, we wondered if coating the gas flow channel with a nonstick substance will prevent salt-laden droplets from staying on the surface of the electrodes for too long and, therefore, reduce salt buildup.” Wang said in the release.

According to Wang, these relatively simple discoveries can extend the operational lifespan of CO2RR systems from a few hundred hours to over 1,000 hours.

The findings also have major implications for commercial applications, Shan added.

“This advancement paves the way for longer-lasting and more reliable (CO2RR) systems, making the technology more practical for large-scale chemical manufacturing,” Shan said in the release. “The improvements we developed are crucial for transitioning CO2 electrolysis from laboratory setups to commercial applications for producing sustainable fuels and chemicals.”