ENERGY 101

How is energy produced?

Energy sources are often categorized as renewable or not, but perhaps a more accurate classification focuses on the type of reaction that converts energy into useful matter. Photo by simpson33/Getty Images

Many think of the Energy Industry as a dichotomy–old vs. new, renewable vs. nonrenewable, good vs. bad. But like most things, energy comes from an array of sources, and each kind has its own unique benefits and challenges. Understanding the multi-faceted identity of currently available energy sources creates an environment in which new ideas for cleaner and more sustainable energy sourcing can proliferate.

At a high level, energy can be broadly categorized by the process of extracting and converting it into a useful form.

Energy Produced from Chemical Reaction

Energy derived from coal, crude oil, natural gas, and biomass is primarily produced as a result of bonds breaking during a chemical reaction. When heated, burned, or fermented, organic matter releases energy, which is converted into mechanical or electrical energy.

These sources can be stored, distributed, and shared relatively easily and do not have to be converted immediately for power consumption. However, the resulting chemical reaction produces environmentally harmful waste products.

Though the processes to extract these organic sources of energy have been refined for many years to achieve reliable and cheap energy, they can be risky and are perceived as invasive to mother nature.

According to the 2022 bp Statistical Review of World Energy, approximately 50% of the world’s energy consumption comes from petroleum and natural gas; another 25% from coal. Though there was a small decline in demand for oil from 2019 to 2021, the overall demand for fossil fuels remained unchanged during the same time frame, mostly due to the increase in natural gas and coal consumption.

Energy Produced from Mechanical Reaction

Energy captured from the earth’s heat or the movement of wind and water results from the mechanical processes enabled by the turning of turbines in source-rich environments. These turbines spin to produce electricity inside a generator.

Solar energy does not require the use of a generator but produces electricity due to the release of electrons from the semiconducting materials found on a solar panel. The electricity produced by geothermal, wind, solar, and hydropower is then converted from direct current to alternating current electricity.

Electricity is most useful for immediate consumption, as storage requires the use of batteries–a process that turns electrical energy into chemical energy that can then be accessed in much the same way that coal, crude oil, natural gas, and biomass produce energy.

Energy Produced from a Combination of Reactions

Hydrogen energy comes from a unique blend of both electrical and chemical energy processes. Despite hydrogen being the most abundant element on earth, it is rarely found on its own, requiring a two-step process to extract and convert energy into a usable form. Hydrogen is primarily produced as a by-product of fossil fuels, with its own set of emissions challenges related to separating the hydrogen from the hydrocarbons.

Many use electrolysis to separate hydrogen from other elements before performing a chemical reaction to create electrical energy inside of a contained fuel cell. The electrolysis process is certainly a more environmentally-friendly solution, but there are still great risks with hydrogen energy–it is highly flammable, and its general energy output is less than that of other electricity-generating methods.

Energy Produced from Nuclear Reaction

Finally, energy originating from the splitting of an atom’s nucleus, mostly through nuclear fission, is yet another way to produce energy. A large volume of heat is released when an atom is bombarded by neutrons in a nuclear power plant, which is then converted to electrical energy.

This process also produces a particularly sensitive by-product known as radiation, and with it, radioactive waste. The proper handling of radiation and radioactive waste is of utmost concern, as its effects can be incredibly damaging to the environment surrounding a nuclear power plant.

Nuclear fission produces minimal carbon, so nuclear energy is oft considered environmentally safe–as long as strict protocols are followed to ensure proper storage and disposal of radiation and radioactive waste.

Nuclear to Mechanical to Chemical?

Interestingly enough, the Earth’s heat comes from the decay of radioactive materials in the Earth’s core, loosely linking nuclear power production back to geothermal energy production.

It’s also clear the conversion of energy into electricity is the cleanest option for the environment, yet adequate infrastructure remains limited in supply and accessibility. If not consumed immediately as electricity, energy is thus converted into a chemical form for the convenience of storage and distribution it provides.

Perhaps the expertise and talent of Houstonians serving the flourishing academic and industrial sectors of energy development will soon resolve many of our current energy challenges by exploring further the circular dynamic of the energy environment. Be sure to check out our Events Page to find the networking event that best serves your interest in the Energy Transition.


------

Lindsey Ferrell is a contributing writer to EnergyCapitalHTX and founder of Guerrella & Co.

Trending News

 

A View From HETI

Oxy CEO Vicki Hollub (center) is the first woman to win WPC Energy's Dewhurst Award. Photo via 1pointfive.com

Vicki Hollub, president and CEO of Houston-based Occidental (Oxy), has become the first woman to win WPC Energy’s prestigious Dewhurst Award.

Hollub is the thirteenth recipient of the award, which is considered the highest honor from WPC Energy, a global, non-advocacy, non-political nonprofit organization that promotes the sustainable management of energy and energy products. She is just the fourth U.S. winner since the award launched in 1991. Other U.S. winners include former ExxonMobil CEO Rex Tillerson; Daniel Yergin, vice chairman of S&P Global and chairman of CERAWeek; and former chairman and CEO of Chevron Kenneth Derr.

According to WPC Energy, the Dewhurst Award is given to “exceptional individuals whose leadership and contributions have had a lasting impact on the global energy industry.” It is named after Thomas Dewhurst, who organised the first WPC Energy Congress, formerly the World Petroleum Congress, in 1933.

Oxy works to advance low-carbon technologies, reduce emissions and is leading a number of energy transition projects. Its Oxy Innovation Center is housed in Houston’s The Ion.

Hollub has held a variety of roles in her 40-year career with Occidental, including chief operating officer and senior executive vice president. She also led strategic acquisitions for Occidental of Anadarko Petroleum in 2019 and CrownRock in 2024, and serves on the boards of Lockheed Martin and the American Petroleum Institute. She is one of the first women to lead a major U.S. oil and gas company.

“Vicki Hollub’s visionary leadership and unwavering dedication to innovation and sustainability have set a benchmark for excellence in our industry,” Pedro Miras, WPC Energy President, said in a news release. “She embodies the spirit of the Dewhurst Award—forward-looking, courageous and deeply committed to advancing the global energy dialogue. Her contributions continue to inspire the next generation of energy leaders.”

Hollub will receive the award in April 2026 in Riyadh, Saudi Arabia at the 25th WPC Energy Congress, where she will also present the Dewhurst Lecture.

“I am honored to be selected for the Dewhurst Award and appreciate WPC Energy recognizing our company’s achievements,” Hollub added in the release. “The Dewhurst Award reflects the collective efforts of the talented and dedicated team at Oxy, whose commitment to innovation, operational and technical excellence, and sustainability drives our success.”

Trending News