"The world has two complementary challenges: decarbonization to deal with climate change and ensuring that there is a steady, safe, and reliable supply of energy. Nuclear can help with both." Photo via Getty Images

A magnitude 9.0 earthquake and resulting tsunami devastated Japan’s Fukushima province in 2011 and flooded the nearby nuclear power plant. This damaged the reactor cores and released radiation. How many people died as a result of radiation exposure?

A. More than 10,000

B. More than 5,000

C. More than 1,000

D. More than 100

E. 1

The correct answer: E.

Yes, I was surprised, too.

No question: Fukushima was a tragedy. The earthquake and tsunami; about 18,000 people died. The evacuation of 150,000 people due to fears about possible radiation was traumatic and cost lives due to stress and interrupted medical care, particularly among the elderly. Fukushima a disaster — but it was a natural disaster, not a nuclear one.

In 2018, Japan confirmed the first death of a worker at the plant as a result of radiation exposure, and there has been none since. But surely, this is just a matter of time; there will be more cancers and premature deaths. Not so, according to the UN’s Scientific Committee on the Effects of Atomic Radiation. In 2021, it found that “no adverse health effects among Fukushima residents have been documented that could be directly attributed to radiation exposure from the accident, nor are expected to be detectable in the future.” The World Health Organization came to a similar conclusion, as did the US Centers for Disease Control.

Fukushima is widely regarded as the second-worst nuclear-power accident in history (after Chernobyl which was much, much worse). As a result of it, Japan shut down or suspended all of its nuclear operations, which generated about 30 percent of its power at the time. Many have stayed shut. Germany pledged to phase out nuclear power by the end of 2022, and Spain, Belgium and Switzerland announced the same, but a bit more slowly.

And so, to my point: While I know there are difficulties, I think more countries, particularly in the West, need to get serious about nuclear. Even though people with impeccable green and/or progressive credentials like George Monbiot of The Guardian, James Hansen (sometimes known as the “father of global warming”), Stewart Brand (of Whole Earth Catalog fame), Steven Pinker, and yes, Sting believe that nuclear must play a bigger role in order to achieve deep and last decarbonization, I get the impression that the topic is often seen not fit for discussion in polite green society. It’s striking how few of the country submissions about meeting their climate goals under the Paris accords mention nuclear.

There are two major objections.

It’s dangerous. No, it’s not, and nuclear plants are not run by legions of Homer Simpsons. In fact, nuclear has proved incredibly safe over its 60-plus year history. Here is the OECD in 2010: “Even though nuclear power is perceived as a high risk, comparison with other energy sources shows far fewer fatalities.” Since releases of radioactivity were so rare — and none in OECD countries prior to Fukushima — the OECD noted that “reliance on statistics of events is not possible.” Instead, it had to do a theoretical exercise. An analysis of deaths per terawatt-hour (TWh) of electricity estimated nuclear’s toll at 0.03 per TWh. That figure includes Chernobyl as well as things like workplace accidents. That is less than wind (0.04), and a bit more than solar (0.02).

And of course, since we live in the real world, it’s important to remember that any particular source is part of a larger system. Nuclear power is markedly less dangerous than fossil fuels, which are deadlier in terms of production, and also carry risks in the form of respiratory disease and other problems related to air pollution. James Hansen estimated in 2013 that, by displacing fossil fuels, nuclear power has prevented an average of 1.84 million air pollution-related deaths and 64 gigatons of GHG emissions.

It’s expensive. Upfront costs are high, and operating a plant isn’t cheap. By any measure, renewables, gas, and coal are all cheaper and that will probably be the case for the foreseeable future. In addition, renewables and gas can continue to innovate and their costs could continue to fall without the big capital expenditures that nuclear requires. It’s fair to say that under today’s conditions, the economics of nuclear are against it.

But, what if conditions change? For one thing, a big chunk of the expense comes in the form of time. In places where it takes a decade or more just to get through the regulations and litigation — and the United States is one — that drives up costs enormously. McKinsey has estimated that If nuclear costs could be lowered 20 to 40 percent, it would be competitive with other forms of generation. (It’s worth noting that in the years when renewables were very expensive, there were still many voices in support of them, for reasons of health, energy security, and diversity of supply. All these apply to nuclear.) To be clear: I am not against nuclear regulation: safety first and last. But it is possible to foster both safety and efficiency, and to drive down costs in the process.

Moreover, renewables are dependent on the weather; they cannot keep the lights on 24/7 without storage, which at the moment is both limited and expensive. The relative economics compared to nuclear change a lot if storage is added to the equation.

As for the positive case for nuclear, there are several elements. One has to do with innovation. A new generation of advanced water-cooled and small modular reactors (SMRs) are even safer than existing ones and generate less waste. (The US Nuclear Regulatory Commission certified NuScale’s SMR design in July.) These new designs might also change the economics. The capital and construction costs of SMRs are much less, although still big, an estimated $3 billion for NuScale, for example. The idea is that they could be mass-manufactured, generating economies of scale, then shipped to markets that could never afford the kind of massive plants that are the norm now. But that can only happen if it is allowed to happen, which is a kind of Catch-22. As an MIT study noted: “Policies that foreclose a role for nuclear energy discourage investment in nuclear technology.” And that guarantees that costs will stay high.

An important advantage of nuclear is that, acre for acre, it produces more power than solar or wind. Indeed, it’s not even close. The late British physicist and climate scientist David Mackay estimated that wind has a power density — power per unit of land area—of two watts per square meter (2W/m2); for solar farms, the figure is 10W/m2 — and for nuclear 1,000W/m2. To visualize what that means, to deliver the same amount of power, wind would require 500 acres, or almost three-fifths of New York’s Central Park, or all of Disneyland; nuclear would need less than a football field. And Earth is not growing massive amounts of new land.

Finally, it is hard to see how the world gets to deep decarbonization without it. Right now, nuclear provides more than half of all carbon-free US emissions and 30 percent globally. That cannot be replaced quickly or cost-effectively, particularly given that demand will continue to rise. It’s interesting, too, that to some extent, nuclear is assumed to be part of the climate solution. Indeed, in all three of the pathways it describes that limit warming to 1.5 degrees Celsius (see page 28) the Intergovernmental Panel on Climate Change sees substantial increases in nuclear power.

There are itty-bitty signs that the mood may be changing, even in democratic places with active anti-nuclear campaigns. With Europe’s energy system struggling, Germany is slowing down its nuclear phase-out, by extending the life of two of its reactors. Japan, which has to import almost all its energy, is considering investing in a new generation of nuclear power plants. Britain is building its first new plant in decades — although the process has been troubled with delays and cost overruns. France is accelerating deployment and President Macron has said the country could build as many as 14 more — a reversal of the country’s previous plan to reduce its reliance on nuclear, which generates more than two-thirds of its power.

Closer to home, in September, California decided to extend the life of its Diablo Canyon nuclear plant, which is the state’s largest single source of electricity (see image). The Biden Administration has allocated $2.5 billion for research into new nuclear technologies, and supported existing ones to stay open.

But the fact remains that the United States has just two plants under construction, both in Georgia, and costs are ballooning. Only one nuclear plant has started up since 1996, while almost a dozen have been retired. And it’s not just the US: there are only two under construction in the EU. Most new plants are rising in Asia, particularly China, India, and Korea.

Here’s the thing: I have been what passes for a nuclear optimist for decades — and been wrong for that long. I am tempted, yet again, to say that nuclear is having its moment. I won’t go that far, because in the West, I don’t think it is.

But I think that, just maybe, that moment is edging closer, out of necessity. The world has two complementary challenges: decarbonization to deal with climate change and ensuring that there is a steady, safe, and reliable supply of energy. Nuclear can help with both.

------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn.

Energy sources are often categorized as renewable or not, but perhaps a more accurate classification focuses on the type of reaction that converts energy into useful matter. Photo by simpson33/Getty Images

How is energy produced?

ENERGY 101

Many think of the Energy Industry as a dichotomy–old vs. new, renewable vs. nonrenewable, good vs. bad. But like most things, energy comes from an array of sources, and each kind has its own unique benefits and challenges. Understanding the multi-faceted identity of currently available energy sources creates an environment in which new ideas for cleaner and more sustainable energy sourcing can proliferate.

At a high level, energy can be broadly categorized by the process of extracting and converting it into a useful form.

Energy Produced from Chemical Reaction

Energy derived from coal, crude oil, natural gas, and biomass is primarily produced as a result of bonds breaking during a chemical reaction. When heated, burned, or fermented, organic matter releases energy, which is converted into mechanical or electrical energy.

These sources can be stored, distributed, and shared relatively easily and do not have to be converted immediately for power consumption. However, the resulting chemical reaction produces environmentally harmful waste products.

Though the processes to extract these organic sources of energy have been refined for many years to achieve reliable and cheap energy, they can be risky and are perceived as invasive to mother nature.

According to the 2022 bp Statistical Review of World Energy, approximately 50% of the world’s energy consumption comes from petroleum and natural gas; another 25% from coal. Though there was a small decline in demand for oil from 2019 to 2021, the overall demand for fossil fuels remained unchanged during the same time frame, mostly due to the increase in natural gas and coal consumption.

Energy Produced from Mechanical Reaction

Energy captured from the earth’s heat or the movement of wind and water results from the mechanical processes enabled by the turning of turbines in source-rich environments. These turbines spin to produce electricity inside a generator.

Solar energy does not require the use of a generator but produces electricity due to the release of electrons from the semiconducting materials found on a solar panel. The electricity produced by geothermal, wind, solar, and hydropower is then converted from direct current to alternating current electricity.

Electricity is most useful for immediate consumption, as storage requires the use of batteries–a process that turns electrical energy into chemical energy that can then be accessed in much the same way that coal, crude oil, natural gas, and biomass produce energy.

Energy Produced from a Combination of Reactions

Hydrogen energy comes from a unique blend of both electrical and chemical energy processes. Despite hydrogen being the most abundant element on earth, it is rarely found on its own, requiring a two-step process to extract and convert energy into a usable form. Hydrogen is primarily produced as a by-product of fossil fuels, with its own set of emissions challenges related to separating the hydrogen from the hydrocarbons.

Many use electrolysis to separate hydrogen from other elements before performing a chemical reaction to create electrical energy inside of a contained fuel cell. The electrolysis process is certainly a more environmentally-friendly solution, but there are still great risks with hydrogen energy–it is highly flammable, and its general energy output is less than that of other electricity-generating methods.

Energy Produced from Nuclear Reaction

Finally, energy originating from the splitting of an atom’s nucleus, mostly through nuclear fission, is yet another way to produce energy. A large volume of heat is released when an atom is bombarded by neutrons in a nuclear power plant, which is then converted to electrical energy.

This process also produces a particularly sensitive by-product known as radiation, and with it, radioactive waste. The proper handling of radiation and radioactive waste is of utmost concern, as its effects can be incredibly damaging to the environment surrounding a nuclear power plant.

Nuclear fission produces minimal carbon, so nuclear energy is oft considered environmentally safe–as long as strict protocols are followed to ensure proper storage and disposal of radiation and radioactive waste.

Nuclear to Mechanical to Chemical?

Interestingly enough, the Earth’s heat comes from the decay of radioactive materials in the Earth’s core, loosely linking nuclear power production back to geothermal energy production.

It’s also clear the conversion of energy into electricity is the cleanest option for the environment, yet adequate infrastructure remains limited in supply and accessibility. If not consumed immediately as electricity, energy is thus converted into a chemical form for the convenience of storage and distribution it provides.

Perhaps the expertise and talent of Houstonians serving the flourishing academic and industrial sectors of energy development will soon resolve many of our current energy challenges by exploring further the circular dynamic of the energy environment. Be sure to check out our Events Page to find the networking event that best serves your interest in the Energy Transition.


------

Lindsey Ferrell is a contributing writer to EnergyCapitalHTX and founder of Guerrella & Co.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston companies land DOE vouchers for clean tech

money moves

Ten Houston-area companies will receive vouchers from the Department of Energy's latest round of funding to support the adoption of clean energy tech.

The companies are among 111 organizations to receive up to $250,000 in vouchers from the DOE's Office of Technology Transitions, totaling $9.8 million in funding, according to a release from the department.

The voucher program is in collaboration with the Offices of Clean Energy Demonstrations (OCED), Fossil Energy and Carbon Management (FECM), and Energy Efficiency and Renewable Energy (EERE). It is funded by the Bipartisan Infrastructure Law.

“It takes a breadth of tools and expertise to bring an innovative technology from research and development to deployment,” Vanessa Z. Chan, DOE Chief Commercialization Officer and Director of the Office of Technology Transitions, says in a statement. “The Voucher Program will pair 111 clean energy solutions with the support they need from expert voucher providers to help usher new technologies to market.”

In addition to the funding, the program seeks to help small businesses and non-traditional organizations gain access to testing facilities and third-party expertise.

The vouchers come in five different opportunities that focus on different areas of business growth and support:

  • Voucher Opportunity 1 (VO1) - Pre-Demonstration Commercialization Support
  • Voucher Opportunity 2 (VO2) - Performance Validation, Modeling, and Certification Support
  • Voucher Opportunity 3 (VO3) - Clean Energy Demonstration Project Siting/Permitting Support
  • Voucher Opportunity 4 (VO4) - Commercialization Support (for companies with a functional technology prototype)
  • Voucher Opportunity 5 (VO5) - Commercialization Support (for developers, including for-profit firms, that are working to commercialize a prototype that fits a specific technology vertical of interest for DOE)

The 10 Houston-area companies to receive funding, their voucher type and projects include:

  • Terradote Inc. with Big Blue Technologies Inc. (VO2): Full ISO-Compliant Life Cycle Assessment for Clean Energy Technologies
  • Solugen Inc. and Encina with ACTion Battery Technologies L.L.C. and Frontline Waste Holding LLC (Vo2): Barracuda Virtual Reactor Simulation, Validation and Testing
  • Flow Safe with Concept Group LLC and Precision Fluid Control (VO2): Durability Testing of Hydrogen Components, Materials, and Storage Systems
  • Percheron Power LLC (VO4): Fundraising Support
  • Capwell Services Inc. with Banyu Carbon Inc. (VO5): Field Testing Support for Validation of Novel Resource Sustainability Technologies
  • Syzygy Plasmonics with Ample Carbon PBC, Terraform Industries, Lydian Labs Inc. and Vycarb Inc. (VO5): Rapid Life Cycle Assessment for Carbon Management or Resource Sustainability Technologies
  • Solidec Inc. with GreenFire Energy (VO5): LCA Calculator Tool for Carbon Management or Resource Sustainability Technologies
  • Encino Environmental Services LLC with Wood Cache, Completion Corp and Carbon Lockdown (VO5): Realtime Above/Underground Gas Monitoring Reporting and Verification, Including Cloud Connectivity for Remote Sites
  • Mati Carbon PBC with Ebb Carbon Inc. (VO5): Community Benefits Assessment and Environmental Justice

Other Texas-based companies to receive funding included Molecular Rebar Design LLC and Talus Renewables from Austin, Deep Anchor Solutions from College Station, and ACTion Battery Technologies LLC from Wichita Falls.

Last October, the DOE also awarded the Houston area more than $2 million for projects that improve energy efficiency and infrastructure in the region.

In December, its Office of Clean Energy Demonstrations also selected a Houston power company for a commercial-scale carbon capture and storage project cost-sharing agreement.

New global report names top cleantech startups to keep an eye on

seeing green

Nine Greentown Labs members were recognized on a global list honoring cleantech companies.

Houston-based Fervo Energy was named to Cleantech Group’s Global Cleantech 100 report. Cleantech Group is a research-driven company that aids the public sector, private sector, investors, and also identifies, assesses, and engages with the innovative solutions around climate challenges.

Fervo, a geothermal energy company that specializes in a renewable energy technology that uses hot water to produce electricity, debuted in 2022 on the list, and was honored in the “Energy & Power” category for the second straight year.

The other Greentown Labs, which is dual located in Houston and Somerville, Massachusetts, companies recognized on the list include:

  • Amogy, a New York-based novel carbon-free energy system using ammonia as a renewable fuel
  • Carbon Upcycling Technologies, a Canadian waste and carbon utilization company
  • Dandelion Energy, New York-based company offering ground source heat pumps for most homes
  • Energy Dome, a Milan-based company addressing the problem of long-duration energy storage
  • e-Zinc, a Canadian company with a breakthrough electrochemical technology for energy storage
  • Nth Cycle, a Massachusetts company with sustainable metal refining
  • Raptor Maps, a Massachusetts company with a software platform for solar assets' performance data management
  • Sublime Systems, a Massachusetts companydeveloping a breakthrough process for low-carbon cement
  • WeaveGrid, a California company working with utilities, automakers, EVSEs, and EV owners to enable and accelerate the electrification of transportation

The number of nominations from the public, a panel, i3, awards and Cleantech Group totaled 25,435 from over 65 countries, which is a 61% increase from the 2023 nomination process. Winners were chosen from a short list of 330 companies by a panel of over 80 industry experts.

While not on the list, Beaumont-based Fortress Energy was mentioned for its electrolyzer supply agreement with Cleantech Group 100 winner Electric Hydrogen.

The Cleantech Group 100 was started 15 years ago.

“In 15 more years, we will be at 2039—by which time, a mere decade out from the ‘net-zero’ target of 2050,” Cleantech Group CEO Richard Youngman says in the report. “I would expect the composition of our annual list to have markedly changed again, and the leading upcoming private companies of that time to reflect such.”