"The world has two complementary challenges: decarbonization to deal with climate change and ensuring that there is a steady, safe, and reliable supply of energy. Nuclear can help with both." Photo via Getty Images

A magnitude 9.0 earthquake and resulting tsunami devastated Japan’s Fukushima province in 2011 and flooded the nearby nuclear power plant. This damaged the reactor cores and released radiation. How many people died as a result of radiation exposure?

A. More than 10,000

B. More than 5,000

C. More than 1,000

D. More than 100

E. 1

The correct answer: E.

Yes, I was surprised, too.

No question: Fukushima was a tragedy. The earthquake and tsunami; about 18,000 people died. The evacuation of 150,000 people due to fears about possible radiation was traumatic and cost lives due to stress and interrupted medical care, particularly among the elderly. Fukushima a disaster — but it was a natural disaster, not a nuclear one.

In 2018, Japan confirmed the first death of a worker at the plant as a result of radiation exposure, and there has been none since. But surely, this is just a matter of time; there will be more cancers and premature deaths. Not so, according to the UN’s Scientific Committee on the Effects of Atomic Radiation. In 2021, it found that “no adverse health effects among Fukushima residents have been documented that could be directly attributed to radiation exposure from the accident, nor are expected to be detectable in the future.” The World Health Organization came to a similar conclusion, as did the US Centers for Disease Control.

Fukushima is widely regarded as the second-worst nuclear-power accident in history (after Chernobyl which was much, much worse). As a result of it, Japan shut down or suspended all of its nuclear operations, which generated about 30 percent of its power at the time. Many have stayed shut. Germany pledged to phase out nuclear power by the end of 2022, and Spain, Belgium and Switzerland announced the same, but a bit more slowly.

And so, to my point: While I know there are difficulties, I think more countries, particularly in the West, need to get serious about nuclear. Even though people with impeccable green and/or progressive credentials like George Monbiot of The Guardian, James Hansen (sometimes known as the “father of global warming”), Stewart Brand (of Whole Earth Catalog fame), Steven Pinker, and yes, Sting believe that nuclear must play a bigger role in order to achieve deep and last decarbonization, I get the impression that the topic is often seen not fit for discussion in polite green society. It’s striking how few of the country submissions about meeting their climate goals under the Paris accords mention nuclear.

There are two major objections.

It’s dangerous. No, it’s not, and nuclear plants are not run by legions of Homer Simpsons. In fact, nuclear has proved incredibly safe over its 60-plus year history. Here is the OECD in 2010: “Even though nuclear power is perceived as a high risk, comparison with other energy sources shows far fewer fatalities.” Since releases of radioactivity were so rare — and none in OECD countries prior to Fukushima — the OECD noted that “reliance on statistics of events is not possible.” Instead, it had to do a theoretical exercise. An analysis of deaths per terawatt-hour (TWh) of electricity estimated nuclear’s toll at 0.03 per TWh. That figure includes Chernobyl as well as things like workplace accidents. That is less than wind (0.04), and a bit more than solar (0.02).

And of course, since we live in the real world, it’s important to remember that any particular source is part of a larger system. Nuclear power is markedly less dangerous than fossil fuels, which are deadlier in terms of production, and also carry risks in the form of respiratory disease and other problems related to air pollution. James Hansen estimated in 2013 that, by displacing fossil fuels, nuclear power has prevented an average of 1.84 million air pollution-related deaths and 64 gigatons of GHG emissions.

It’s expensive. Upfront costs are high, and operating a plant isn’t cheap. By any measure, renewables, gas, and coal are all cheaper and that will probably be the case for the foreseeable future. In addition, renewables and gas can continue to innovate and their costs could continue to fall without the big capital expenditures that nuclear requires. It’s fair to say that under today’s conditions, the economics of nuclear are against it.

But, what if conditions change? For one thing, a big chunk of the expense comes in the form of time. In places where it takes a decade or more just to get through the regulations and litigation — and the United States is one — that drives up costs enormously. McKinsey has estimated that If nuclear costs could be lowered 20 to 40 percent, it would be competitive with other forms of generation. (It’s worth noting that in the years when renewables were very expensive, there were still many voices in support of them, for reasons of health, energy security, and diversity of supply. All these apply to nuclear.) To be clear: I am not against nuclear regulation: safety first and last. But it is possible to foster both safety and efficiency, and to drive down costs in the process.

Moreover, renewables are dependent on the weather; they cannot keep the lights on 24/7 without storage, which at the moment is both limited and expensive. The relative economics compared to nuclear change a lot if storage is added to the equation.

As for the positive case for nuclear, there are several elements. One has to do with innovation. A new generation of advanced water-cooled and small modular reactors (SMRs) are even safer than existing ones and generate less waste. (The US Nuclear Regulatory Commission certified NuScale’s SMR design in July.) These new designs might also change the economics. The capital and construction costs of SMRs are much less, although still big, an estimated $3 billion for NuScale, for example. The idea is that they could be mass-manufactured, generating economies of scale, then shipped to markets that could never afford the kind of massive plants that are the norm now. But that can only happen if it is allowed to happen, which is a kind of Catch-22. As an MIT study noted: “Policies that foreclose a role for nuclear energy discourage investment in nuclear technology.” And that guarantees that costs will stay high.

An important advantage of nuclear is that, acre for acre, it produces more power than solar or wind. Indeed, it’s not even close. The late British physicist and climate scientist David Mackay estimated that wind has a power density — power per unit of land area—of two watts per square meter (2W/m2); for solar farms, the figure is 10W/m2 — and for nuclear 1,000W/m2. To visualize what that means, to deliver the same amount of power, wind would require 500 acres, or almost three-fifths of New York’s Central Park, or all of Disneyland; nuclear would need less than a football field. And Earth is not growing massive amounts of new land.

Finally, it is hard to see how the world gets to deep decarbonization without it. Right now, nuclear provides more than half of all carbon-free US emissions and 30 percent globally. That cannot be replaced quickly or cost-effectively, particularly given that demand will continue to rise. It’s interesting, too, that to some extent, nuclear is assumed to be part of the climate solution. Indeed, in all three of the pathways it describes that limit warming to 1.5 degrees Celsius (see page 28) the Intergovernmental Panel on Climate Change sees substantial increases in nuclear power.

There are itty-bitty signs that the mood may be changing, even in democratic places with active anti-nuclear campaigns. With Europe’s energy system struggling, Germany is slowing down its nuclear phase-out, by extending the life of two of its reactors. Japan, which has to import almost all its energy, is considering investing in a new generation of nuclear power plants. Britain is building its first new plant in decades — although the process has been troubled with delays and cost overruns. France is accelerating deployment and President Macron has said the country could build as many as 14 more — a reversal of the country’s previous plan to reduce its reliance on nuclear, which generates more than two-thirds of its power.

Closer to home, in September, California decided to extend the life of its Diablo Canyon nuclear plant, which is the state’s largest single source of electricity (see image). The Biden Administration has allocated $2.5 billion for research into new nuclear technologies, and supported existing ones to stay open.

But the fact remains that the United States has just two plants under construction, both in Georgia, and costs are ballooning. Only one nuclear plant has started up since 1996, while almost a dozen have been retired. And it’s not just the US: there are only two under construction in the EU. Most new plants are rising in Asia, particularly China, India, and Korea.

Here’s the thing: I have been what passes for a nuclear optimist for decades — and been wrong for that long. I am tempted, yet again, to say that nuclear is having its moment. I won’t go that far, because in the West, I don’t think it is.

But I think that, just maybe, that moment is edging closer, out of necessity. The world has two complementary challenges: decarbonization to deal with climate change and ensuring that there is a steady, safe, and reliable supply of energy. Nuclear can help with both.

------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn.

Energy sources are often categorized as renewable or not, but perhaps a more accurate classification focuses on the type of reaction that converts energy into useful matter. Photo by simpson33/Getty Images

How is energy produced?

ENERGY 101

Many think of the Energy Industry as a dichotomy–old vs. new, renewable vs. nonrenewable, good vs. bad. But like most things, energy comes from an array of sources, and each kind has its own unique benefits and challenges. Understanding the multi-faceted identity of currently available energy sources creates an environment in which new ideas for cleaner and more sustainable energy sourcing can proliferate.

At a high level, energy can be broadly categorized by the process of extracting and converting it into a useful form.

Energy Produced from Chemical Reaction

Energy derived from coal, crude oil, natural gas, and biomass is primarily produced as a result of bonds breaking during a chemical reaction. When heated, burned, or fermented, organic matter releases energy, which is converted into mechanical or electrical energy.

These sources can be stored, distributed, and shared relatively easily and do not have to be converted immediately for power consumption. However, the resulting chemical reaction produces environmentally harmful waste products.

Though the processes to extract these organic sources of energy have been refined for many years to achieve reliable and cheap energy, they can be risky and are perceived as invasive to mother nature.

According to the 2022 bp Statistical Review of World Energy, approximately 50% of the world’s energy consumption comes from petroleum and natural gas; another 25% from coal. Though there was a small decline in demand for oil from 2019 to 2021, the overall demand for fossil fuels remained unchanged during the same time frame, mostly due to the increase in natural gas and coal consumption.

Energy Produced from Mechanical Reaction

Energy captured from the earth’s heat or the movement of wind and water results from the mechanical processes enabled by the turning of turbines in source-rich environments. These turbines spin to produce electricity inside a generator.

Solar energy does not require the use of a generator but produces electricity due to the release of electrons from the semiconducting materials found on a solar panel. The electricity produced by geothermal, wind, solar, and hydropower is then converted from direct current to alternating current electricity.

Electricity is most useful for immediate consumption, as storage requires the use of batteries–a process that turns electrical energy into chemical energy that can then be accessed in much the same way that coal, crude oil, natural gas, and biomass produce energy.

Energy Produced from a Combination of Reactions

Hydrogen energy comes from a unique blend of both electrical and chemical energy processes. Despite hydrogen being the most abundant element on earth, it is rarely found on its own, requiring a two-step process to extract and convert energy into a usable form. Hydrogen is primarily produced as a by-product of fossil fuels, with its own set of emissions challenges related to separating the hydrogen from the hydrocarbons.

Many use electrolysis to separate hydrogen from other elements before performing a chemical reaction to create electrical energy inside of a contained fuel cell. The electrolysis process is certainly a more environmentally-friendly solution, but there are still great risks with hydrogen energy–it is highly flammable, and its general energy output is less than that of other electricity-generating methods.

Energy Produced from Nuclear Reaction

Finally, energy originating from the splitting of an atom’s nucleus, mostly through nuclear fission, is yet another way to produce energy. A large volume of heat is released when an atom is bombarded by neutrons in a nuclear power plant, which is then converted to electrical energy.

This process also produces a particularly sensitive by-product known as radiation, and with it, radioactive waste. The proper handling of radiation and radioactive waste is of utmost concern, as its effects can be incredibly damaging to the environment surrounding a nuclear power plant.

Nuclear fission produces minimal carbon, so nuclear energy is oft considered environmentally safe–as long as strict protocols are followed to ensure proper storage and disposal of radiation and radioactive waste.

Nuclear to Mechanical to Chemical?

Interestingly enough, the Earth’s heat comes from the decay of radioactive materials in the Earth’s core, loosely linking nuclear power production back to geothermal energy production.

It’s also clear the conversion of energy into electricity is the cleanest option for the environment, yet adequate infrastructure remains limited in supply and accessibility. If not consumed immediately as electricity, energy is thus converted into a chemical form for the convenience of storage and distribution it provides.

Perhaps the expertise and talent of Houstonians serving the flourishing academic and industrial sectors of energy development will soon resolve many of our current energy challenges by exploring further the circular dynamic of the energy environment. Be sure to check out our Events Page to find the networking event that best serves your interest in the Energy Transition.


------

Lindsey Ferrell is a contributing writer to EnergyCapitalHTX and founder of Guerrella & Co.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Investors from Houston and Boston fuel Greentown with $4M commitment

next era

Greentown Labs, a climatetech incubator with locations in the Houston and Boston areas, has announced it has received funding from a mix of investors.

The $4 million in funding came from both of the Houston and Massachusetts locations. Houston investors included Bobby Tudor, CEO of Artemis Energy Partners and chairman of the Houston Energy Transition Initiative; David Baldwin, co-founder of OpenMinds and TEX-E and partner at SCF Partners; and Rice University. Other investors included MassDevelopment and the City of Somerville.

“The challenges of the energy transition are immense, and the role played by technology incubators like Greentown Labs is essential,” Tudor says in a news release. “We believe this role, which is a partnership between academia, industry, philanthropists, entrepreneurs, and governments, is the best way to get to effective, scalable solutions in a time frame that the urgency of the challenge requires. We need all hands on deck, and this partnership between Massachusetts and Texas can be a role model for others.”

According to Greentown, the funding will support its financial position and contribute to preparing the incubator for its next chapter of supporting its its leadership team prepare for Greentown’s next chapter supporting and growing its 575 startups.

“Greentown’s mission aligns closely with the Houston Energy Transition Initiative’s goal of accelerating global solutions to address the dual challenge of meeting growing energy demand globally while also significantly reducing CO2 emissions,” adds Steve Kean, president and CEO of the Greater Houston Partnership.

With the announcement of the funding, Greentown named its board members, including Tudor, who will serve as Greentown Labs Board Chair. The other Houston-based board members are:

  • David Baldwin, co-founder of OpenMinds and TEX-E; partner atSCF Partners
  • Bob Harvey, former president and CEO of GHP; board member of TEX-E
  • Jane Stricker, senior vice president of energy transition and executive director of HETI

“With this new funding, Greentown is poised to expand its impact across its existing ecosystems and support even more climatetech startups,” adds Kevin Dutt, interim CEO of Greentown Labs. “We believe in the essential role entrepreneurship will play in the energy transition and we’re grateful for the support of our partners who share in that belief and our collective commitment to commercializing these technologies as quickly and efficiently as possible.”

According to Greentown, the incubator plans to announce its new CEO in the coming months.

2 Houston companies invest in innovative carbon-converting tech from Rice University

freshly funded

A Canadian company based on tech originating out of Rice University closed an equity financing round of up to $20 million thanks to two Houston-based companies.

NewTech Investment Holdings and Westlake Innovations Inc. led Universal Matter's investment round, which the company expand its graphene-based dispersion capacity technology that can be used for servicing customers and prospective customers in its target markets.

“Our continuing interest at NewTech is to seek out and invest in advanced materials companies having high potential to deliver disruptive technologies and environmental benefits within the cleantech sector,” NewTech Investment Holdings Managing Director Guy Hoffman says in a news release. “Universal Matter stands out with its game-changing graphene manufacturing process for producing high quality products that help reduce the carbon footprint in hard- to-abate sectors, such as cement concrete and bitumen asphalt-based applications.

Universal Matter's Flash Joule Heating process technology — originating out of Rice University's James Tour lab by scientist Duy Luong — can upcycle carbon into fully formulated graphene-based products to enhance the performance and sustainability of major industrial materials, per the company's release. Universal Matter developed the complementary product technologies with its Genable graphene-based dispersions that equate to ease-of-use by fabricators in major global markets that include cement/concrete, bitumen asphalt, industrial coatings, automotive tires, and others.

“Graphene is a material with a number of potential performance and sustainability benefits that could apply across a number of Westlake’s ‘Performance & Essential Materials and Housing & Infrastructure Products’ business lines,” Westlake's Senior Vice President and Managing Director John Chao says in the release. “We look forward to working with Universal Matter and its management team as it moves forward on development and commercialization of its flexible technology.”

This year, Universal Matter participated in the Greentown Go Make program put on by Greentown Labs and Shell. During the program, Universal Matter worked with Shell to identify eight potential collaboration areas across upstream carbon feedstocks, downstream end-use applications for the startup’s graphene, and more.

METRO rolls out electric shuttles for downtown Houston commuters

seeing green

The innovative METRO microtransit program will be expanding to the downtown area, the Metropolitan Transit Authority of Harris County announced on Monday.

“Microtransit is a proven solution to get more people where they need to go safely and efficiently,” Houston Mayor John Whitmire said in a statement. “Connected communities are safer communities, and bringing microtransit to Houston builds on my promise for smart, fiscally-sound infrastructure growth.”

The program started in June 2023 when the city’s nonprofit Evolve Houston partnered with the for-profit Ryde company to offer free shuttle service to residents of Second and Third Ward. The shuttles are all-electric and take riders to bus stops, medical buildings, and grocery stores. Essentially, it works as a traditional ride-share service but focuses on multiple passengers in areas where bus access may involve hazards or other obstacles. Riders access the system through the Ride Circuit app.

So far, the microtransit system has made a positive impact in the wards according to METRO. This has led to the current expansion into the downtown area. The system is not designed to replace the standard bus service, but to help riders navigate to it through areas where bus service is more difficult.

“Integrating microtransit into METRO’s public transit system demonstrates a commitment to finding innovative solutions that meet our customers where they are,” said METRO Board Chair Elizabeth Gonzalez Brock. “This on-demand service provides a flexible, easier way to reach METRO buses and rail lines and will grow ridership by solving the first- and last-mile challenges that have hindered people’s ability to choose METRO.”

The City of Houston approved a renewal of the microtransit program in July, authorizing Evolve Houston to spend $1.3 million on it. Some, like council member Letitia Plummer, have questioned whether microtransit is really the future for METRO as the service cuts lines such as the University Corridor.

However, the microtransit system serves clear and longstanding needs in Houston. Getting to and from bus stops in the city with its long blocks, spread-out communities, and fickle pedestrian ways can be difficult, especially for poor or disabled riders. While the bus and rail work fine for longer distances, shorter ones can be underserved.

Even in places like downtown where stops are plentiful, movement between them can still involve walks of a mile or more, and may not serve for short trips.

“Our microtransit service is a game-changer for connecting people, and we are thrilled to launch it in downtown Houston,” said Evolve executive director Casey Brown. “The all-electric, on-demand service complements METRO’s existing fixed-route systems while offering a new solution for short trips. This launch marks an important milestone for our service, and we look forward to introducing additional zones in the new year — improving access to public transit and local destinations.”

———

This article originally ran on CultureMap.