"The world has two complementary challenges: decarbonization to deal with climate change and ensuring that there is a steady, safe, and reliable supply of energy. Nuclear can help with both." Photo via Getty Images

A magnitude 9.0 earthquake and resulting tsunami devastated Japan’s Fukushima province in 2011 and flooded the nearby nuclear power plant. This damaged the reactor cores and released radiation. How many people died as a result of radiation exposure?

A. More than 10,000

B. More than 5,000

C. More than 1,000

D. More than 100

E. 1

The correct answer: E.

Yes, I was surprised, too.

No question: Fukushima was a tragedy. The earthquake and tsunami; about 18,000 people died. The evacuation of 150,000 people due to fears about possible radiation was traumatic and cost lives due to stress and interrupted medical care, particularly among the elderly. Fukushima a disaster — but it was a natural disaster, not a nuclear one.

In 2018, Japan confirmed the first death of a worker at the plant as a result of radiation exposure, and there has been none since. But surely, this is just a matter of time; there will be more cancers and premature deaths. Not so, according to the UN’s Scientific Committee on the Effects of Atomic Radiation. In 2021, it found that “no adverse health effects among Fukushima residents have been documented that could be directly attributed to radiation exposure from the accident, nor are expected to be detectable in the future.” The World Health Organization came to a similar conclusion, as did the US Centers for Disease Control.

Fukushima is widely regarded as the second-worst nuclear-power accident in history (after Chernobyl which was much, much worse). As a result of it, Japan shut down or suspended all of its nuclear operations, which generated about 30 percent of its power at the time. Many have stayed shut. Germany pledged to phase out nuclear power by the end of 2022, and Spain, Belgium and Switzerland announced the same, but a bit more slowly.

And so, to my point: While I know there are difficulties, I think more countries, particularly in the West, need to get serious about nuclear. Even though people with impeccable green and/or progressive credentials like George Monbiot of The Guardian, James Hansen (sometimes known as the “father of global warming”), Stewart Brand (of Whole Earth Catalog fame), Steven Pinker, and yes, Sting believe that nuclear must play a bigger role in order to achieve deep and last decarbonization, I get the impression that the topic is often seen not fit for discussion in polite green society. It’s striking how few of the country submissions about meeting their climate goals under the Paris accords mention nuclear.

There are two major objections.

It’s dangerous. No, it’s not, and nuclear plants are not run by legions of Homer Simpsons. In fact, nuclear has proved incredibly safe over its 60-plus year history. Here is the OECD in 2010: “Even though nuclear power is perceived as a high risk, comparison with other energy sources shows far fewer fatalities.” Since releases of radioactivity were so rare — and none in OECD countries prior to Fukushima — the OECD noted that “reliance on statistics of events is not possible.” Instead, it had to do a theoretical exercise. An analysis of deaths per terawatt-hour (TWh) of electricity estimated nuclear’s toll at 0.03 per TWh. That figure includes Chernobyl as well as things like workplace accidents. That is less than wind (0.04), and a bit more than solar (0.02).

And of course, since we live in the real world, it’s important to remember that any particular source is part of a larger system. Nuclear power is markedly less dangerous than fossil fuels, which are deadlier in terms of production, and also carry risks in the form of respiratory disease and other problems related to air pollution. James Hansen estimated in 2013 that, by displacing fossil fuels, nuclear power has prevented an average of 1.84 million air pollution-related deaths and 64 gigatons of GHG emissions.

It’s expensive. Upfront costs are high, and operating a plant isn’t cheap. By any measure, renewables, gas, and coal are all cheaper and that will probably be the case for the foreseeable future. In addition, renewables and gas can continue to innovate and their costs could continue to fall without the big capital expenditures that nuclear requires. It’s fair to say that under today’s conditions, the economics of nuclear are against it.

But, what if conditions change? For one thing, a big chunk of the expense comes in the form of time. In places where it takes a decade or more just to get through the regulations and litigation — and the United States is one — that drives up costs enormously. McKinsey has estimated that If nuclear costs could be lowered 20 to 40 percent, it would be competitive with other forms of generation. (It’s worth noting that in the years when renewables were very expensive, there were still many voices in support of them, for reasons of health, energy security, and diversity of supply. All these apply to nuclear.) To be clear: I am not against nuclear regulation: safety first and last. But it is possible to foster both safety and efficiency, and to drive down costs in the process.

Moreover, renewables are dependent on the weather; they cannot keep the lights on 24/7 without storage, which at the moment is both limited and expensive. The relative economics compared to nuclear change a lot if storage is added to the equation.

As for the positive case for nuclear, there are several elements. One has to do with innovation. A new generation of advanced water-cooled and small modular reactors (SMRs) are even safer than existing ones and generate less waste. (The US Nuclear Regulatory Commission certified NuScale’s SMR design in July.) These new designs might also change the economics. The capital and construction costs of SMRs are much less, although still big, an estimated $3 billion for NuScale, for example. The idea is that they could be mass-manufactured, generating economies of scale, then shipped to markets that could never afford the kind of massive plants that are the norm now. But that can only happen if it is allowed to happen, which is a kind of Catch-22. As an MIT study noted: “Policies that foreclose a role for nuclear energy discourage investment in nuclear technology.” And that guarantees that costs will stay high.

An important advantage of nuclear is that, acre for acre, it produces more power than solar or wind. Indeed, it’s not even close. The late British physicist and climate scientist David Mackay estimated that wind has a power density — power per unit of land area—of two watts per square meter (2W/m2); for solar farms, the figure is 10W/m2 — and for nuclear 1,000W/m2. To visualize what that means, to deliver the same amount of power, wind would require 500 acres, or almost three-fifths of New York’s Central Park, or all of Disneyland; nuclear would need less than a football field. And Earth is not growing massive amounts of new land.

Finally, it is hard to see how the world gets to deep decarbonization without it. Right now, nuclear provides more than half of all carbon-free US emissions and 30 percent globally. That cannot be replaced quickly or cost-effectively, particularly given that demand will continue to rise. It’s interesting, too, that to some extent, nuclear is assumed to be part of the climate solution. Indeed, in all three of the pathways it describes that limit warming to 1.5 degrees Celsius (see page 28) the Intergovernmental Panel on Climate Change sees substantial increases in nuclear power.

There are itty-bitty signs that the mood may be changing, even in democratic places with active anti-nuclear campaigns. With Europe’s energy system struggling, Germany is slowing down its nuclear phase-out, by extending the life of two of its reactors. Japan, which has to import almost all its energy, is considering investing in a new generation of nuclear power plants. Britain is building its first new plant in decades — although the process has been troubled with delays and cost overruns. France is accelerating deployment and President Macron has said the country could build as many as 14 more — a reversal of the country’s previous plan to reduce its reliance on nuclear, which generates more than two-thirds of its power.

Closer to home, in September, California decided to extend the life of its Diablo Canyon nuclear plant, which is the state’s largest single source of electricity (see image). The Biden Administration has allocated $2.5 billion for research into new nuclear technologies, and supported existing ones to stay open.

But the fact remains that the United States has just two plants under construction, both in Georgia, and costs are ballooning. Only one nuclear plant has started up since 1996, while almost a dozen have been retired. And it’s not just the US: there are only two under construction in the EU. Most new plants are rising in Asia, particularly China, India, and Korea.

Here’s the thing: I have been what passes for a nuclear optimist for decades — and been wrong for that long. I am tempted, yet again, to say that nuclear is having its moment. I won’t go that far, because in the West, I don’t think it is.

But I think that, just maybe, that moment is edging closer, out of necessity. The world has two complementary challenges: decarbonization to deal with climate change and ensuring that there is a steady, safe, and reliable supply of energy. Nuclear can help with both.

------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn.

Energy sources are often categorized as renewable or not, but perhaps a more accurate classification focuses on the type of reaction that converts energy into useful matter. Photo by simpson33/Getty Images

How is energy produced?

ENERGY 101

Many think of the Energy Industry as a dichotomy–old vs. new, renewable vs. nonrenewable, good vs. bad. But like most things, energy comes from an array of sources, and each kind has its own unique benefits and challenges. Understanding the multi-faceted identity of currently available energy sources creates an environment in which new ideas for cleaner and more sustainable energy sourcing can proliferate.

At a high level, energy can be broadly categorized by the process of extracting and converting it into a useful form.

Energy Produced from Chemical Reaction

Energy derived from coal, crude oil, natural gas, and biomass is primarily produced as a result of bonds breaking during a chemical reaction. When heated, burned, or fermented, organic matter releases energy, which is converted into mechanical or electrical energy.

These sources can be stored, distributed, and shared relatively easily and do not have to be converted immediately for power consumption. However, the resulting chemical reaction produces environmentally harmful waste products.

Though the processes to extract these organic sources of energy have been refined for many years to achieve reliable and cheap energy, they can be risky and are perceived as invasive to mother nature.

According to the 2022 bp Statistical Review of World Energy, approximately 50% of the world’s energy consumption comes from petroleum and natural gas; another 25% from coal. Though there was a small decline in demand for oil from 2019 to 2021, the overall demand for fossil fuels remained unchanged during the same time frame, mostly due to the increase in natural gas and coal consumption.

Energy Produced from Mechanical Reaction

Energy captured from the earth’s heat or the movement of wind and water results from the mechanical processes enabled by the turning of turbines in source-rich environments. These turbines spin to produce electricity inside a generator.

Solar energy does not require the use of a generator but produces electricity due to the release of electrons from the semiconducting materials found on a solar panel. The electricity produced by geothermal, wind, solar, and hydropower is then converted from direct current to alternating current electricity.

Electricity is most useful for immediate consumption, as storage requires the use of batteries–a process that turns electrical energy into chemical energy that can then be accessed in much the same way that coal, crude oil, natural gas, and biomass produce energy.

Energy Produced from a Combination of Reactions

Hydrogen energy comes from a unique blend of both electrical and chemical energy processes. Despite hydrogen being the most abundant element on earth, it is rarely found on its own, requiring a two-step process to extract and convert energy into a usable form. Hydrogen is primarily produced as a by-product of fossil fuels, with its own set of emissions challenges related to separating the hydrogen from the hydrocarbons.

Many use electrolysis to separate hydrogen from other elements before performing a chemical reaction to create electrical energy inside of a contained fuel cell. The electrolysis process is certainly a more environmentally-friendly solution, but there are still great risks with hydrogen energy–it is highly flammable, and its general energy output is less than that of other electricity-generating methods.

Energy Produced from Nuclear Reaction

Finally, energy originating from the splitting of an atom’s nucleus, mostly through nuclear fission, is yet another way to produce energy. A large volume of heat is released when an atom is bombarded by neutrons in a nuclear power plant, which is then converted to electrical energy.

This process also produces a particularly sensitive by-product known as radiation, and with it, radioactive waste. The proper handling of radiation and radioactive waste is of utmost concern, as its effects can be incredibly damaging to the environment surrounding a nuclear power plant.

Nuclear fission produces minimal carbon, so nuclear energy is oft considered environmentally safe–as long as strict protocols are followed to ensure proper storage and disposal of radiation and radioactive waste.

Nuclear to Mechanical to Chemical?

Interestingly enough, the Earth’s heat comes from the decay of radioactive materials in the Earth’s core, loosely linking nuclear power production back to geothermal energy production.

It’s also clear the conversion of energy into electricity is the cleanest option for the environment, yet adequate infrastructure remains limited in supply and accessibility. If not consumed immediately as electricity, energy is thus converted into a chemical form for the convenience of storage and distribution it provides.

Perhaps the expertise and talent of Houstonians serving the flourishing academic and industrial sectors of energy development will soon resolve many of our current energy challenges by exploring further the circular dynamic of the energy environment. Be sure to check out our Events Page to find the networking event that best serves your interest in the Energy Transition.


------

Lindsey Ferrell is a contributing writer to EnergyCapitalHTX and founder of Guerrella & Co.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas claims No. 1 spot on new energy resilience report

A new report by mineral group Texas Royalty Brokers ranks Texas as the No. 1 most energy-resilient state.

The study focused on four main sources of electricity in hydroelectric dams, natural gas plants, nuclear reactors and petroleum facilities. Each state was given an Energy Resilience Score based on size and diversity of its power infrastructure, energy production and affordability for residents.

Texas earned a score of 71.3 on the report, outpacing much of the rest of the country. Pennsylvania came in at No. 2 with a score of 55.8, followed by New York (49.1) and California (48.4).

According to the report, Texas produces 11.7 percent of the country’s total energy, made possible by the state’s 141,000-megawatt power infrastructure—the largest in America.

Other key stats in the report for Texas included:

  • Per-capita consumption: 165,300 kWh per year
  • Per-capita expenditures: $5,130 annually
  • Total summer capacity: 141,200 megawatts

Despite recent failures in the ERCOT grid, including the 2021 power grid failure during Winter Storm Uri and continued power outages with climate events like 2024’s Hurricane Beryl that left 2.7 million without power, Texas still was able to land No. 1 on an energy resilience list. Texas has had the most weather-related power outages in the country in recent years, with 210 events from 2000 to 2023, according to an analysis by the nonprofit Climate Central. It's also the only state in the lower 48 with no major connections to neighboring states' power grids.

Still, the report argues that “(Texas’ infrastructure) is enough to provide energy to 140 million homes. In total, Texas operates 732 power facilities with over 3,000 generators spread across the state, so a single failure can’t knock out the entire grid here.”

The report acknowledges that a potential problem for Texas will be meeting the demands of AI data centers. Eric Winegar, managing partner at Texas Royalty Brokers, warns that these projects consume large amounts of energy and water.

According to another Texas Royalty Brokers report, Texas has 17 GPU cluster sites across the state, which is more than any other region in the United States. GPUs are specialized chips that run AI models and perform calculations.

"Energy resilience is especially important in the age of AI. The data centers that these technologies use are popping up across America, and they consume huge amounts of electricity. Some estimates even suggest that AI could account for 8% of total U.S. power consumption by 2030,” Winegar commented in the report. “We see that Texas is attracting most of these new facilities because it already has the infrastructure to support them. But we think the state needs to keep expanding capacity to meet growing demand."

Houston energy expert looks ahead to climate tech trends of 2026

Guest Column

There is no sugar‑coating it: 2025 was a rough year for many climate tech founders. Headlines focused on policy rollbacks and IRA uncertainty, while total climate tech venture and growth investment only inched up to about 40.5 billion dollars, an 8% rise that felt more like stabilization than the 2021–2022 boom. Deal count actually fell 18% and investor participation dropped 19%, with especially steep pullbacks in carbon and transportation, as capital concentrated in fewer, larger, “safer” bets. Growth-stage funding jumped 78% while early-stage seed rounds dropped 20%.

On top of that, tariff battles and shifting trade rules added real supply‑chain friction. In the first half of 2025, solar and wind were still 91% of new U.S. capacity additions, but interconnection delays, equipment uncertainty, and changing incentive structures meant many projects stalled or were repriced mid‑stream. Founders who had raised on 2021‑style valuations and policy optimism suddenly found themselves stuck in limbo, extending runway or shutting down.

The bright spots were teams positioned at the intersection of climate and the AI power surge. Power demand from data centers is now a primary driver of new climate‑aligned offtake, pulling capital toward firm, 24/7 resources. Geothermal developers like Fervo Energy, Sage Geosystems and XGS did well. Google’s enhanced‑geothermal deal in Nevada scales from a 3.5 MW pilot to about 115 MW under a clean transition tariff, nearly 30× growth in geothermal capacity enabled by a single corporate buyer. Meta and others are exploring similar pathways to secure round‑the‑clock low‑carbon power for hyperscale loads.

Beyond geothermal, nuclear is clearly back on the strategic menu. In 2024, Google announced the first U.S. corporate nuclear offtake, committing to purchase 500 MW from Kairos Power’s SMR fleet by 2035, a signal that big tech is willing to underwrite new firm‑power technologies when the decarbonization and reliability story is compelling. Meta just locked in 6.6GW of nuclear capacity through deals with Vistra, Oklo, and TerraPower.

Growth investors and corporates are increasingly clustering around platforms that can monetize long‑duration PPAs into data‑center demand rather than purely policy‑driven arbitrage.

Looking into 2026, the same trends will continue:

Solar and wind

Even with policy headwinds, solar and wind continue to dominate new capacity. In the first half of 2025 they made up about 90% of new U.S. electricity capacity. Over the 2025–2028 period, FERC’s ‘high‑probability’ pipeline points to on the order of 90–93 GW of new utility‑scale solar and roughly 20–23 GW of new wind, far outpacing other resources.

Storage and flexibility

Solar plus batteries is now the default build—solar and storage together account for about 81% of expected 2025 U.S. capacity additions, with storage deployments scaling alongside renewables to keep grids flexible. Thermal storage and other grid‑edge flexibility solutions are also attracting growing attention as ways to smooth volatile load.

EVs and transport

EV uptake continues to anchor long‑term battery demand; while transportation funding cooled in 2025, EV sales and charging build‑out are still major components of clean‑energy demand‑side investment

Buildings

Heat pumps, smart HVAC, and efficient water heating are now the dominant vectors for building‑sector decarbonization. Heating and cooling startups alone have raised billions since 2020, with nearly 700 million dollars going into HVAC‑focused companies in 2024, and that momentum carried into 2025.

Hydrogen

The green hydrogen narrative has faded, but analysts still see hydrogen as essential for steel, chemicals, and other hard‑to‑abate sectors, with large‑scale projects and offtake frameworks under development rather than headline hype.

CCS/CCUS

After years of skepticism, more large CCS projects are finally reaching FID and coming online, helped by a mix of tax credits and industrial demand, which makes CCS look more investable than it did in the pre‑IRA era.

So, yes, 2025 was a downer from the easy‑money, policy‑euphoria years. But the signal beneath the noise is clear: capital is rotating toward technologies with proven unit economics, real offtake (especially from AI‑driven power loads), and credible paths to scale—not away from climate altogether.

---

Nada Ahmed is the founding partner at Houston-based Energy Tech Nexus.

Houston startup advances methane tech, sets sights on growth capital

making milestones

Houston-based climatech startup Aquanta Vision achieved key milestones in 2025 for its enhanced methane-detection app and has its focus set on future funding.

Among the achievements was the completion of the National Science Foundation’s Advanced Sensing and Computation for Environmental Decision-making (ASCEND) Engine. The program, based in Colorado and Wyoming, awarded a total of $3 million in grants to support the commercialization of projects that tackle critical resilience challenges, such as water security, wildfire prediction and response, and methane emissions.

Aquanta Vision’s funding went toward commercializing its NETxTEN app, which automates leak detection to improve accuracy, speed and safety. The company estimates that methane leaks cost the U.S. energy industry billions of dollars each year, with 60 percent of leaks going undetected. Additionally, methane leaks account for around 10 percent of natural gas's contribution to climate change, according to MIT’s climate portal.

Throughout the months-long ASCEND program, Aquanta Vision moved from the final stages of testing into full commercial deployment of NETxTEN. The app can instantly identify leaks via its physics-based algorithms and raw video output of optical gas imaging cameras. It does not require companies to purchase new hardware, requires no human intervention and is universally compatible with all optical gas imaging (OGI) cameras. During over 12,000 test runs, 100 percent of leaks were detected by NETxTEN’s system, according to the company.

The app is geared toward end-users in the oil and gas industry who use OGI cameras to perform regular leak detection inspections and emissions monitoring. Aquanta Vision is in the process of acquiring new clients for the app and plans to scale commercialization between now and 2028, Babur Ozden, the company’s founder and CEO, tells Energy Capital.

“In the next 16 months, (our goal is to) gain a number of key customers as major accounts and OEM partners as distribution channels, establish benefits and stickiness of our product and generate growing, recurring revenues for ourselves and our partners,” he says.

The company also received an investment for an undisclosed amount from Marathon Petroleum Corp. late last year. The funding complemented follow-on investments from Ecosphere Ventures and Odyssey Energy Advisors.

Ozden says the funds will go toward the extension of its runway through the end of 2026. It will also help Aquanta Vision grow its team.

Ozden and Marcus Martinez, a product systems engineer, founded Aquanta Vision in 2023 and have been running it as a two-person operation. The company brought on four interns last year, but is looking to add more staff.

Ozden says the company also plans to raise a seed round in 2027 “to catapult us to a rapid growth phase in 2028-29.”