guest column

Houston expert: Why we need to talk about nuclear power

"The world has two complementary challenges: decarbonization to deal with climate change and ensuring that there is a steady, safe, and reliable supply of energy. Nuclear can help with both." Photo via Getty Images

A magnitude 9.0 earthquake and resulting tsunami devastated Japan’s Fukushima province in 2011 and flooded the nearby nuclear power plant. This damaged the reactor cores and released radiation. How many people died as a result of radiation exposure?

A. More than 10,000

B. More than 5,000

C. More than 1,000

D. More than 100

E. 1

The correct answer: E.

Yes, I was surprised, too.

No question: Fukushima was a tragedy. The earthquake and tsunami; about 18,000 people died. The evacuation of 150,000 people due to fears about possible radiation was traumatic and cost lives due to stress and interrupted medical care, particularly among the elderly. Fukushima a disaster — but it was a natural disaster, not a nuclear one.

In 2018, Japan confirmed the first death of a worker at the plant as a result of radiation exposure, and there has been none since. But surely, this is just a matter of time; there will be more cancers and premature deaths. Not so, according to the UN’s Scientific Committee on the Effects of Atomic Radiation. In 2021, it found that “no adverse health effects among Fukushima residents have been documented that could be directly attributed to radiation exposure from the accident, nor are expected to be detectable in the future.” The World Health Organization came to a similar conclusion, as did the US Centers for Disease Control.

Fukushima is widely regarded as the second-worst nuclear-power accident in history (after Chernobyl which was much, much worse). As a result of it, Japan shut down or suspended all of its nuclear operations, which generated about 30 percent of its power at the time. Many have stayed shut. Germany pledged to phase out nuclear power by the end of 2022, and Spain, Belgium and Switzerland announced the same, but a bit more slowly.

And so, to my point: While I know there are difficulties, I think more countries, particularly in the West, need to get serious about nuclear. Even though people with impeccable green and/or progressive credentials like George Monbiot of The Guardian, James Hansen (sometimes known as the “father of global warming”), Stewart Brand (of Whole Earth Catalog fame), Steven Pinker, and yes, Sting believe that nuclear must play a bigger role in order to achieve deep and last decarbonization, I get the impression that the topic is often seen not fit for discussion in polite green society. It’s striking how few of the country submissions about meeting their climate goals under the Paris accords mention nuclear.

There are two major objections.

It’s dangerous. No, it’s not, and nuclear plants are not run by legions of Homer Simpsons. In fact, nuclear has proved incredibly safe over its 60-plus year history. Here is the OECD in 2010: “Even though nuclear power is perceived as a high risk, comparison with other energy sources shows far fewer fatalities.” Since releases of radioactivity were so rare — and none in OECD countries prior to Fukushima — the OECD noted that “reliance on statistics of events is not possible.” Instead, it had to do a theoretical exercise. An analysis of deaths per terawatt-hour (TWh) of electricity estimated nuclear’s toll at 0.03 per TWh. That figure includes Chernobyl as well as things like workplace accidents. That is less than wind (0.04), and a bit more than solar (0.02).

And of course, since we live in the real world, it’s important to remember that any particular source is part of a larger system. Nuclear power is markedly less dangerous than fossil fuels, which are deadlier in terms of production, and also carry risks in the form of respiratory disease and other problems related to air pollution. James Hansen estimated in 2013 that, by displacing fossil fuels, nuclear power has prevented an average of 1.84 million air pollution-related deaths and 64 gigatons of GHG emissions.

It’s expensive. Upfront costs are high, and operating a plant isn’t cheap. By any measure, renewables, gas, and coal are all cheaper and that will probably be the case for the foreseeable future. In addition, renewables and gas can continue to innovate and their costs could continue to fall without the big capital expenditures that nuclear requires. It’s fair to say that under today’s conditions, the economics of nuclear are against it.

But, what if conditions change? For one thing, a big chunk of the expense comes in the form of time. In places where it takes a decade or more just to get through the regulations and litigation — and the United States is one — that drives up costs enormously. McKinsey has estimated that If nuclear costs could be lowered 20 to 40 percent, it would be competitive with other forms of generation. (It’s worth noting that in the years when renewables were very expensive, there were still many voices in support of them, for reasons of health, energy security, and diversity of supply. All these apply to nuclear.) To be clear: I am not against nuclear regulation: safety first and last. But it is possible to foster both safety and efficiency, and to drive down costs in the process.

Moreover, renewables are dependent on the weather; they cannot keep the lights on 24/7 without storage, which at the moment is both limited and expensive. The relative economics compared to nuclear change a lot if storage is added to the equation.

As for the positive case for nuclear, there are several elements. One has to do with innovation. A new generation of advanced water-cooled and small modular reactors (SMRs) are even safer than existing ones and generate less waste. (The US Nuclear Regulatory Commission certified NuScale’s SMR design in July.) These new designs might also change the economics. The capital and construction costs of SMRs are much less, although still big, an estimated $3 billion for NuScale, for example. The idea is that they could be mass-manufactured, generating economies of scale, then shipped to markets that could never afford the kind of massive plants that are the norm now. But that can only happen if it is allowed to happen, which is a kind of Catch-22. As an MIT study noted: “Policies that foreclose a role for nuclear energy discourage investment in nuclear technology.” And that guarantees that costs will stay high.

An important advantage of nuclear is that, acre for acre, it produces more power than solar or wind. Indeed, it’s not even close. The late British physicist and climate scientist David Mackay estimated that wind has a power density — power per unit of land area—of two watts per square meter (2W/m2); for solar farms, the figure is 10W/m2 — and for nuclear 1,000W/m2. To visualize what that means, to deliver the same amount of power, wind would require 500 acres, or almost three-fifths of New York’s Central Park, or all of Disneyland; nuclear would need less than a football field. And Earth is not growing massive amounts of new land.

Finally, it is hard to see how the world gets to deep decarbonization without it. Right now, nuclear provides more than half of all carbon-free US emissions and 30 percent globally. That cannot be replaced quickly or cost-effectively, particularly given that demand will continue to rise. It’s interesting, too, that to some extent, nuclear is assumed to be part of the climate solution. Indeed, in all three of the pathways it describes that limit warming to 1.5 degrees Celsius (see page 28) the Intergovernmental Panel on Climate Change sees substantial increases in nuclear power.

There are itty-bitty signs that the mood may be changing, even in democratic places with active anti-nuclear campaigns. With Europe’s energy system struggling, Germany is slowing down its nuclear phase-out, by extending the life of two of its reactors. Japan, which has to import almost all its energy, is considering investing in a new generation of nuclear power plants. Britain is building its first new plant in decades — although the process has been troubled with delays and cost overruns. France is accelerating deployment and President Macron has said the country could build as many as 14 more — a reversal of the country’s previous plan to reduce its reliance on nuclear, which generates more than two-thirds of its power.

Closer to home, in September, California decided to extend the life of its Diablo Canyon nuclear plant, which is the state’s largest single source of electricity (see image). The Biden Administration has allocated $2.5 billion for research into new nuclear technologies, and supported existing ones to stay open.

But the fact remains that the United States has just two plants under construction, both in Georgia, and costs are ballooning. Only one nuclear plant has started up since 1996, while almost a dozen have been retired. And it’s not just the US: there are only two under construction in the EU. Most new plants are rising in Asia, particularly China, India, and Korea.

Here’s the thing: I have been what passes for a nuclear optimist for decades — and been wrong for that long. I am tempted, yet again, to say that nuclear is having its moment. I won’t go that far, because in the West, I don’t think it is.

But I think that, just maybe, that moment is edging closer, out of necessity. The world has two complementary challenges: decarbonization to deal with climate change and ensuring that there is a steady, safe, and reliable supply of energy. Nuclear can help with both.

------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn.

Trending News

A View From HETI

Greenhouse gases continue to rise, and the challenges they pose are not going away. Photo via Getty Images

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

Trending News