The newly launched EnergyCapitalHTX has a new editor. Photo via Getty Images

Houston's role in the energy transition is a developing story, and one new media platform that's dedicated to telling it has a new leader at the helm.

EnergyCapitalHTX, which launched on June 1, is the newest platform from Houston-based Gow Media, a media company and the parent company of InnovationMap, CultureMap, SportsMap, and ESPN Radio 97.5FM and 92.5FM. Natalie Harms, inaugural editor of InnovationMap, has been promoted to oversee EnergyCapitalHTX. The promotion took effect on June 26.

“Natalie will do a great job as editor of EnergyCapitalHTX. Her work covering Houston’s innovation economy has been outstanding and we are delighted to extend her leadership to Houston’s energy transition,” says David Gow, chairman of Gow Media. “She has demonstrated an ability to take complex topics and write about them in a clear, informative manner – an attribute that will support the growth of”

The site launched with inaugural sponsor HETI, founded in 2021 by the Greater Houston Partnership. Led by Executive Director Jane Stricker, HETI was founded to drive economic growth in the Houston area within the energy transition toward a lower carbon future.

“We are thrilled at the recent announcement of Natalie as the editor of EnergyCapitalHTX. She has a proven track record of telling the Houston innovation story and look forward to working with her to continue share the exciting happenings in the energy transition ecosystem,” says Stricker, who also serves as GHP's Senior Vice President of Energy Transition.

Prior to launching InnovationMap as editor in 2018, Harms served as associate editor at the Houston Business Journal. A University of Houston journalism graduate, she also has a certificate in publishing from New York University. In 2020, she received the Small Business Media Advocate award from the Small Business Administration for her work on InnovationMap.

Harms also hosts the Houston Innovators Podcast, a weekly conversation with movers and shakers within Houston's innovation community.

Natalie Harms is the editor of InnovationMap and EnergyCapitalHTX. Photo courtesy

Can Houston stay a leader in the future of energy? Scott Nyquist weighs in. Photo via Getty Images

Expert: Houston is the energy capital of the world now — but can it stay that way?

guest column

Houston has a legacy in in the energy industry — but can it remain the energy capital of the world? In short, yes.

That may sound counterintuitive, given that the energy system is transitioning — slowly, but inexorably — away from the city’s strengths in oil and gas. But that is the point: to an extent that may be overlooked, the O&G industry is critical to the transition, in two ways. Houston is well placed to take the lead on both.

First, there is the simple fact that oil and gas are essential, and will be for decades to come. About 99 percent of vehicles on the road right now use fossil fuels, and there are no readily available substitutes for their uses as feedstock for other industries, such as chemicals. Oil and gas account for almost 70 percent of US primary energy demand.

I do believe that their influence will diminish, as the energy system transitions to cleaner, lower-emission sources. McKinsey’s most recent Global Energy Perspective projected demand for oil will peak by 2027 and for gas a decade later. The International Energy Agency (IEA) sees the same evolution, but somewhat more slowly. Even after demand peaks, whenever that is, oil and gas will still be used, just not as much. I don’t see any reasonable scenario in which oil and gas disappears or is left in the ground for decades to come.

Second, and more interestingly, the O&G industry itself is essential to the goal of reducing greenhouse-gas emissions. If that sounds counterintuitive, too—well, it is. But bear with me. Under almost all emissions-reduction scenarios, carbon capture and storage (CCS), including direct air capture, and hydrogen play huge roles--accounting for more than 20 percent of future cuts in the IEA’s projection, for example. The Intergovernmental Panel on Climate Change also sees a big role for CCS, while noting that “global rates of CCS deployment are far below those in modelled pathways limiting global warming to 1.5°C or 2°C.” In other words, it matters, and there’s not enough of it. Hydrogen has been many people’s favorite technology of the future since at least the 1990s; the World Energy Council says it could account for as much as 25 percent of total final energy consumption by 2050, though likely less.

Let’s consider CCS first. This refers to reducing carbon-dioxide (CO2) emissions, particularly from industry, by capturing it on-site and then storing it underground: it is therefore never released into the atmosphere. Direct air capture sucks out carbon from the atmosphere, and then stores it. There is more than enough storage capacity, according to the IEA, and the technologies work.

No alt text provided for this image

Credit: Global CCS Institute

The problem has been regulation and economics—CCS is relatively expensive. About half of US emissions come from power generation and industry, such as cement; carbon capture works for both. And that is just what is possible now. Eventually, captured CO2 could be used to make a wide array of products, including building materials, carbon fiber, synthetic fuels, and plastics.

The Biden Administration is allocating $3.5 billion for direct air capture projects and $8 billion for hydrogen; those are not huge sums, given how costly large-scale energy projects are, but it just might be the beginning of bigger things. In addition, companies that have committed to net zero are beginning to put serious money behind carbon capture—almost $2 billion so far this year, compared to just $50 million in the past.

All this is relevant to Houston because Texas is the largest single US producer of both oil and gas, and these are the only players that now routinely use CCS, for gas processing and enhanced oil recovery. Houston is, by far, the national leader in carbon capture. Moreover, CCS can help to scale up “blue” or lower-emissions hydrogen, which could be an even bigger opportunity.

Hydrogen is not a source of energy, but a carrier of it. Once the hydrogen is produced—that is, separated from other elements, such as the oxygen in water—it can be stored and then released, either through combustion or via a fuel cell that converts hydrogen into electricity. Hydrogen could be used in a wide variety of ways, including powering vehicles, heating buildings, and fueling industry. Indeed, its potential is so broad and deep that the Hydrogen Council (with help from McKinsey) estimated late last year that hydrogen could contribute more than 20 percent of emissions abatement to 2050. The Council is a trade group and may therefore be a little optimistic (or a lot), but no one questions the potential of hydrogen in cutting emissions.

Right now, the primary use of hydrogen is in oil refining, which is one of Houston’s major industries. In addition, O&G companies are already looking into the conversion of methane in natural gas to hydrogen as well as the possibility of blending hydrogen into natural gas to lower the carbon content.

The Houston region already produces and consumes a third of the nation’s hydrogen, and is home to most of its dedicated hydrogen pipelines; its massive and efficient pipeline and transport system for gas can be adapted to move hydrogen. For the production of “green” or very-low emissions hydrogen, Houston also has a significant—and growing--renewable energy infrastructure. Indeed, if Texas was a country, it would be the world’s fifth-largest generator of wind power, and it is second in solar in the United States.

In short, when it comes to hydrogen, Houston is well ahead of the competitive pack, not only in physical terms, but in the human expertise that will count most of all to turn hydrogen from boutique to big. According to a recent report by the Center for Houston’s Future, Houston-based hydrogen assets could abate 220 million tons of carbon emissions by 2050, or more than half of Texas’s current emissions. Plus, it could create $100 billion in economic value.

The bottom line: there is no practical emissions reduction on the scale that the United States has committed to—net zero by 2050—without the development of CCS and hydrogen. And the O&G industry is leading the way in both these technologies. That puts Houston in an enviable position to both be part of the transition and to benefit from it. All told, according to the Houston Energy Transition Initiative, which includes 17 major energy-industry players, the region could gain up to 400,000 jobs in an accelerated scenario of adopting lower-carbon technologies. (McKinsey helped with this research, too.) To use a term beloved of consultants, that looks like a win-win.

Houston calls itself the “energy capital of the world”—and this isn’t a case of all hat and no cattle. The city is home to a critical mass of capital, innovation, expertise, and entrepreneurship. To continue to deserve that title, however, will require Houston to embrace the challenge of the energy transition: providing the reliable energy the world needs while also reducing emissions.


Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn.

Andrew Yang offers entrepreneurial advice to startups in the thriving Innovation Corridor seated in midtown Houston. Photo courtesy of Lauren M. Postler/Andrew Yang.

Energy Transition entrepreneurs make the most of heat, humidity at Greentown Labs Houston

meet and greet

It’s not every day that an entrepreneur gets grilled on their go-to-market-plans by a former presidential candidate, but for a few nascent businesses, that’s just what happened last Friday at Greentown Labs Houston.

Grilled is perhaps too strong a term, as Andrew Yang, an entrepreneur turned politician, conversed convivially with a half-dozen growing businesses in the thriving Innovation Corridor seated in midtown Houston. Yang listened carefully to each company’s elevator pitch, interrupting only to exclaim, “that’s so cool!” and “congratulations, man!” like an awestruck coed before asking thoughtful questions about the journey ahead for each entrepreneur.

Lara Cottingham, vice president of strategy, policy, and climate impact at Greentown Labs Houston, set the tone for the tour with an overview of Greentown Labs and the entrepreneurial efforts in energy transition it supports.

“[Greentown Labs was] founded 12 years ago. We’ve supported about 550 startups. Our startups have created over 24,000 jobs – and that’s just in Boston and Texas,” says Cottingham. “We don’t really know how to fully measure everywhere, but they are operating globally.

“Our startups have raised about $4 billion dollars. Half of that was last year,” Cottingham continues. “When we talk about now being the time to be in climatetech, now is the time.”

The tour begins with WIP International Services, a start up solving the problem of thirst and water scarcity by extracting moisture from humid environments and converting it into usable water.

pouring water into tall glassesWIP International Services aims to make drinking water more readily available in humid locations. Image via Shutterstock.

“We can produce a purely distilled product, or a mineralized, pH balanced product for potable water,” explains Tracy L. Jackson, CEO of WIP International Services LLC.

The small group tagging along with Yang cheers the idea of creating clean water to drink while lowering the humidity of their homes, and effectively, their demand on energy for air-conditioning in a city that is now well into three-digit summer temperatures with average outdoor humidity above 70 percent.

Jackson almost stumbled into her startup by accident 8 years ago. She was visiting a site in Louisiana working on algae solutions, where she encountered an earlier (and much larger and noisier) model of the unit that stood in front of her now, no bigger than a standard water cooler. Inspired by scenes she witnessed in Africa during her tenure with an oilfield services company, Jackson knew this was a solution too good to keep quiet.

“Because I had been in Africa – I worked in an oil and gas services company – I had seen people standing in line for water from a water well in a village. And I thought, ‘this would be perfect for that situation,’” Jackson tells the tour group. “We now have developing relationships in Africa as well as Mexico on large scale projects for atmospheric water generation.”

At the next stop, Reid Carrazzone, president and CEO of Top Grain Technologies, softly explains how he and Zack Cordero, chief scientific officer, address the challenges of long-lead times and harsh environments impeding the ability to get hydrogen-fired turbines 100 percent hydrogen-fired.

close up of 3D printer making metal objectTop Grain Technologies resolves how to make 3D printed metals more heat resistant. Image via Shutterstock.

“We are commercializing a heat treatment invented at MIT that will enable 3D-printed metal materials to serve in combustion turbine engines,” Carrazzone tells Yang. “Traditionally, 3D-printed metals are not well-suited to serving the environments of high temperature/high stress that you’d find in jet engines and natural gas settings.

“These [3D-printed] materials, certain classes of them, can be uniquely hydrogen-compatible, as well as have temperature capabilities in excess of the existing materials today,” Carrazzone says. “They will need our heat treatment to bridge that final gap in properties.”

Yang lights up with at the prospect that the duo may have come up with a truly unique solution, even suggesting the company may be in a name-your-own-price situation. The Top Grain Technologies team accepts the compliment with humility, insisting it’s more about solving the simple problems one step at a time.

Companies that Yang met along the Greentown Labs workshop floor represent just a fraction of the innovation proliferating across Houston in recent years, each with a different focus on energy sustainability and the circular economy. Maybe one day Yang, Jackson, and Carrazzone will look back on this interaction and think, “I knew them when…” Only time, and continued tending to the entrepreneurial spirit, will tell.

Nick Purday, IT director of emerging digital technology for ConocoPhillips, presented at the Reuters Events Data-Driven Oil and Gas Conference 2023 to help dispel any myths about digital twins. Photo courtesy of Shuttershock.

The secret to unlocking efficiency for the energy transition? Data management


As Nick Purday, IT director of emerging digital technology for ConocoPhillips, began his presentation at the Reuters Events Data-Driven Oil and Gas Conference 2023 in Houston yesterday, he lamented at missing the opportunity to dispel any myths about digital twins given his second-to-last time slot of the conference.

He may have sold himself short.

No less than a hush fell over the crowd as Purday described one of the more challenging applications of digital twins his team tackled late last year. Purday explained, “The large diagram [up there], that’s two trains from our LNG facility. How long did that take to build? We built that one in a month.”

It’s been years since an upstream oil and gas audience has gasped, but Purday swept the crowd with admiration for the swift, arduous task undertaken by his team.

He then addressed the well-known balance of good/fast/cheap in a rare glimpse under the hood of project planning for such novel technology. “As soon as you move into remote visualization applications – think Alaska, think Norway – then you’re going to get a pretty good return on your investment. Think 3-to-1,” Purday explains. “As you would expect, those simulation digital twins, those are the ones where you get huge value. Optimizing the energy requirements of an LNG facility – huge value associated with that.

“Independently, Forrester did some work recently and came up with a 4-to-1 return, so that fits exactly with our data set,” Purday continued before casually bringing up the foundation for their successful effort.

“If you’ve got good data, then it doesn’t take that long and you can do these pretty effectively,” Purday stated plainly.

Another wave of awe rippled across the room.

In an earlier panel session, Nathan McMahan, data strategy chief at CoP, commented on the shared responsibility model for data in the industry. “When I talked to a lot of people across the organization, three common themes commonly filtered up: What’s the visibility, access, and trust of data?” McMahan observed.

Strong data governance stretches across the organization, but the Wells team, responsible for drilling and completions activity, stood out to McMahan with its approach to data governance.

“They had taken ownership of [the] data and partnered with business units across the globe to standardize best practices between some of the tools and data ingestion methods, even work with suppliers and contractors, [to demonstrate] our expectations for how we take data,” McMahan explained. “They even went a step further to bring an IT resource onto their floor and start to create roles of the owners and the stewards and the custodians of the data. They really laid that good foundation and built upon that with some of the outcomes they wanted to achieve with machine learning techniques and those sorts of things.“

The key, McMahan concluded, is making the “janitorial effort [of] cleaning up data sustainable… and fun.”

The sentiment of fun continued in Purday's late afternoon presentation as he explained how the application went viral upon sharing it with 1 or 2 testers, crashing the email of the lead developer responsible for managing the model as he was flooded with questions and kudos.

Digital twin applications significantly reduce the carbon footprint created by sending personnel to triage onsite concerns for LNG, upstream, and refining facilities in addition to streamlining processes and enabling tremendous savings. The application Purday described allowed his team to discover an issue previously only resolved by flying someone to a remote location where they would likely spend days testing and analyzing the area to diagnose the problem.

The digital twin found the issue in 10 minutes, and the on-site team resolved the problem within the day.

The LNG operations team now consistently starts their day with a bit of a spark, using the digital twin during morning meetings to help with planning and predictive maintenance.

A number of companies have officially announced their plans to discuss the future with their investment community at the upcoming conference. Photo courtesy of

Power, Energy and Renewables investor conference features numerous Houston-based companies


Tomorrow, leading companies from around the globe will share their 2024 financial outlook at the J.P. Morgan Energy, Power, and Renewables Conference. Although Houston is best known as the Oil and Gas capital of the world, the city presents strongly at this broader financial showcase of companies spanning the entire energy value chain, with numerous presentations originating from Houston-based organizations.

Baker Hughes Company, Crestwood Equity Partners, EOG Resources, Excelerate Energy, HESS Corporation, Oceaneering International, and TechnipFMC are just a few of the companies that have officially announced their plans to discuss the future with their investment community at the event.

In advance of the event, Bristow, a leader in offshore helicopter and search-and-rescue services around the world headquartered in Houston, released investor guidance for the coming year and made available the accompanying investor presentation for preview before their speaking spot slated for 4:30 PM ET on Wednesday, June 21, 2023.

Embedded in small print on the information-rich slide entitled, “ESG Highlights,” the company highlights continued efforts to embrace electric vertical take-off and landing vehicle (eVTOL) and electric short take-off and landing vehicle (eSTOL) investment. To date, the company counts seven partnerships in this space – all amassed over the last 18 months.

eVTOL and eSTOL aircraft, touted as more efficient and faster than ground vehicles, could change the landscape for short-distance travel for a variety of industries, ranging from delivery services of both products and personnel to local commuting. (Perhaps the family vehicle depicted in Hanna-Barbera’s futuristic cartoon from the sixties, The Jetsons, isn’t that far off, after all.)

Will any of the stars of this week’s Paris Air Mobility conference, like the newly emerged MagLev Aero, recently acquired Wisk Aero, or very busy Eve Air Mobility, be counted amongst Bristow’s latest partnerships? Tune in tomorrow to the lower-carbon livestream option to find out.


This article originally referenced Crestwood Energy Partners. The information has been corrected above.

Rising temps could result in rolling brownouts this summer–unless we work together to reduce the strain on the electric grid. Photo via Shutterstock

NERC warns of summer energy shortfalls–what you can do now


The North American Electric Reliability Council (NERC) issued a warning with the 2023 Summer Reliability Assessment yesterday – energy shortages could be coming this summer for two-thirds of North America if temperatures spike higher than normal.

“Increased, rapid deployment of wind, solar and batteries have made a positive impact,” Mark Olson, NERC’s manager of reliability assessments says in the release. “However, generator retirements continue to increase the risks associated with extreme summer temperatures, which factors into potential supply shortages in the western two-thirds of North America if summer temperatures spike.”

For Texans, the combined risk of drought and higher-than-normal temperatures could stress ERCOT system resources, especially in the case of reduced wind. But before there’s a mad rush on generators, keep in mind, electricity consumers can take simple actions to minimize the possibility of widespread shortfalls.

Electricity demand begins rising daily around 2 P.M. in the summer and peaks in the final hours of daylight. These hours are generally not only the warmest hours of the day but also the busiest. People return from work to their homes, crank down the air conditioner, turn on TVs, run a load of wash, and prepare meals using multiple electric-powered appliances.

If everyone takes one or two small steps to avoid unnecessary stress on the grid in the hours after coming home from work, we can prevent energy shortfalls. Modify routines now to get into the habit of running the dishwasher overnight, using the washer and dryer before noon or after 8 pm and pulling the shades down in the bright afternoon hours of the day.

Try to delay powering up devices – including EVs – until after dark. Turn off and unplug items to avoid sapping electricity when items are not in use. And if you can bear it, nudge that thermostat up a couple of degrees.

Energy sustainability demands consistent collaboration and coordination from every consumer of energy. Let’s get in the habit of acting neighborly now with conservative electricity practices before we start seeing temperatures–of both the literal and figurative kind–flare.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston's energy industry deemed both a strength and weakness on global cities report

mixed reviews

A new analysis positions the Energy Capital of the World as an economic dynamo, albeit a flawed one.

The recently released Oxford Economics Global Cities Index, which assesses the strengths and weaknesses of the world’s 1,000 largest cities, puts Houston at No. 25.

Houston ranks well for economics (No. 15) and human capital (No. 18), but ranks poorly for governance (No. 184), environment (No. 271), and quality of life (No. 298).

New York City appears at No. 1 on the index, followed by London; San Jose, California; Tokyo; and Paris. Dallas lands at No. 18 and Austin at No. 39.

In its Global Cities Index report, Oxford Economics says Houston’s status as “an international and vertically integrated hub for the oil and gas sector makes it an economic powerhouse. Most aspects of the industry — downstream, midstream, and upstream — are managed from here, including the major fuel refining and petrochemicals sectors.”

“And although the city has notable aerospace and logistics sectors and has diversified into other areas such as biomedical research and tech, its fortunes remain very much tied to oil and gas,” the report adds. “As such, its economic stability and growth lag other leading cities in the index.”

The report points out that Houston ranks highly in the human capital category thanks to the large number of corporate headquarters in the region. The Houston area is home to the headquarters of 26 Fortune 500 companies, including ExxonMobil, Hewlett Packard Enterprise, and Sysco.

Another contributor to Houston’s human capital ranking, the report says, is the presence of Rice University, the University of Houston and the Texas Medical Center.

“Despite this,” says the report, “it lacks the number of world-leading universities that other cities have, and only performs moderately in terms of the educational attainment of its residents.”

Slower-than-expected population growth and an aging population weaken Houston’s human capital score, the report says.

Meanwhile, Houston’s score for quality is life is hurt by a high level of income inequality, along with a low life expectancy compared with nearly half the 1,000 cities on the list, says the report.

Also in the quality-of-life bucket, the report underscores the region’s variety of arts, cultural, and recreational activities. But that’s offset by urban sprawl, traffic congestion, an underdeveloped public transportation system, decreased air quality, and high carbon emissions.

Furthermore, the report downgrades Houston’s environmental stature due to the risks of hurricanes and flooding.

“Undoubtedly, Houston is a leading business [center] that plays a key role in supporting the U.S. economy,” says the report, “but given its shortcomings in other categories, it will need to follow the path of some of its more well-rounded peers in order to move up in the rankings.”


This article originally ran on InnovationMap.

New collaboration to build data center microgrid in Houston

coming soon

Two companies are teaming up to build a natural gas microgrid in Houston that will reduce emissions by 98 percent.

Provider of prime and backup power solutions RPower has teamed up with Houston’s ViVaVerse Solutions to build a 17-megawatt (MW) microgrid at the ViVa Center campus in Houston, which is expected to be commissioned by the end of the year.

The microgrid plans to employ ultra-low emissions and natural gas generators to deliver Resiliency-as-a-Service (RaaS), and this will connect to ViVaVerse's colocation data center operations during utility outages.

RPower will also deploy the microgrid across different ERCOT market programs, which will contribute to assist with essential capacity and ancillary services for the local grid. ERCOT has increased its use of renewable energy in recent years, but still has faced criticism for unstable conditions. The microgrids can potentially assist ERCOT, and also help cut back on emissions.

“RPower's pioneering microgrid will not only deliver essential N+1 resiliency to our data center operations but will also contribute to the local community by supplying necessary capacity during peak demand periods when the electric grid is strained,” Eduardo Morales, CEO of ViVaVerse Solutions and Morales Capital Group, says in a news release.

ViVaVerse Solutions will be converting the former Compaq Computer/HPE headquarters Campus into an innovative technology hub called the ViVa Center, which will host the High-Performance Computing Data Center, and spaces dedicated to mission critical infrastructure and technical facilities . The hub will host 200 data labs.

“We are thrilled to partner with ViVaVerse to deploy this `first of its kind' microgrid solution in the data center space,” Jeff Starcher, CEO of RPower, adds. “Our natural gas backup generation system delivers the same reliability and performance as traditional diesel systems, but with a 98 percent reduction in emissions. Further, the RPower system provides critical grid services and will respond to the volatility of renewable generation, further enabling the energy transition to a carbon free future.”