The secret to unlocking efficiency for the energy transition? One exec says data governance

Nick Purday, IT director of emerging digital technology for ConocoPhillips, presented at the Reuters Events Data-Driven Oil and Gas Conference 2023 to help dispel any myths about digital twins. Photo courtesy of Shuttershock.

As Nick Purday, IT director of emerging digital technology for ConocoPhillips , began his presentation at the Reuters Events Data-Driven Oil and Gas Conference 2023 in Houston yesterday, he lamented at missing the opportunity to dispel any myths about digital twins given his second-to-last time slot of the conference.

He may have sold himself short.

No less than a hush fell over the crowd as Purday described one of the more challenging applications of digital twins his team tackled late last year. Purday explained, “The large diagram [up there], that’s two trains from our LNG facility. How long did that take to build? We built that one in a month .”

It’s been years since an upstream oil and gas audience has gasped, but Purday swept the crowd with admiration for the swift, arduous task undertaken by his team.

He then addressed the well-known balance of good/fast/cheap in a rare glimpse under the hood of project planning for such novel technology. “As soon as you move into remote visualization applications – think Alaska, think Norway – then you’re going to get a pretty good return on your investment. Think 3-to-1,” Purday explains. “As you would expect, those simulation digital twins, those are the ones where you get huge value. Optimizing the energy requirements of an LNG facility – huge value associated with that.

“Independently, Forrester did some work recently and came up with a 4-to-1 return, so that fits exactly with our data set,” Purday continued before casually bringing up the foundation for their successful effort.

“If you’ve got good data, then it doesn’t take that long and you can do these pretty effectively,” Purday stated plainly.

Another wave of awe rippled across the room.

In an earlier panel session, Nathan McMahan, data strategy chief at CoP, commented on the shared responsibility model for data in the industry. “When I talked to a lot of people across the organization, three common themes commonly filtered up: What’s the visibility, access, and trust of data?” McMahan observed.

Strong data governance stretches across the organization, but the Wells team, responsible for drilling and completions activity, stood out to McMahan with its approach to data governance.

“They had taken ownership of [the] data and partnered with business units across the globe to standardize best practices between some of the tools and data ingestion methods, even work with suppliers and contractors, [to demonstrate] our expectations for how we take data,” McMahan explained. “They even went a step further to bring an IT resource onto their floor and start to create roles of the owners and the stewards and the custodians of the data. They really laid that good foundation and built upon that with some of the outcomes they wanted to achieve with machine learning techniques and those sorts of things.“

The key, McMahan concluded, is making the “janitorial effort [of] cleaning up data sustainable… and fun.”

The sentiment of fun continued in Purday's late afternoon presentation as he explained how the application went viral upon sharing it with 1 or 2 testers, crashing the email of the lead developer responsible for managing the model as he was flooded with questions and kudos.

Digital twin applications significantly reduce the carbon footprint created by sending personnel to triage onsite concerns for LNG, upstream, and refining facilities in addition to streamlining processes and enabling tremendous savings. The application Purday described allowed his team to discover an issue previously only resolved by flying someone to a remote location where they would likely spend days testing and analyzing the area to diagnose the problem.

The digital twin found the issue in 10 minutes, and the on-site team resolved the problem within the day.

The LNG operations team now consistently starts their day with a bit of a spark, using the digital twin during morning meetings to help with planning and predictive maintenance.

Trending News

A View From HETI

A View From UH

A Rice University professor studied the Earth's carbon cycle in the Rio Madre de Dios to shed light on current climate conditions. Photo courtesy of Mark Torres/Rice University

Carbon cycles through Earth, its inhabitants, and its atmosphere on a regular basis, but not much research has been done on that process and qualifying it — until now.

In a recent study of a river system extending from the Peruvian Andes to the Amazon floodplains, Rice University’s Mark Torres and collaborators from five institutions proved that that high rates of carbon breakdown persist from mountaintop to floodplain.

“The purpose of this research was to quantify the rate at which Earth naturally releases carbon dioxide into the atmosphere and find out whether this process varies across different geographic locations,” Torres says in a news release .

Torres published his findings in a study published in PNAS , explaining how they used rhenium — a silvery-gray, heavy transition metal — as a proxy for carbon. The research into the Earth’s natural, pre-anthropogenic carbon cycle stands to benefit humanity by providing valuable insight to current climate challenges.

“This research used a newly-developed technique pioneered by Robert Hilton and Mathieu Dellinger that relies on a trace element — rhenium — that’s incorporated in fossil organic matter,” Torres says. “As plankton die and sink to the bottom of the ocean, that dead carbon becomes chemically reactive in a way that adds rhenium to it.”

The research was done in the Rio Madre de Dios basin and supported by funding from a European Research Council Starting Grant, the European Union COFUND/Durham Junior Research Fellowship, and the National Science Foundation.

“I’m very excited about this tool,” Torres said. “Rice students have deployed this same method in our lab here, so now we can make this kind of measurement and apply it at other sites. In fact, as part of current research funded by the National Science Foundation, we are applying this technique in Southern California to learn how tectonics and climate influence the breakdown of fossil carbon.”

Torres also received a three-year grant from the Department of Energy to study soil for carbon storage earlier this year.

Trending News