The five-month program establishes a significant relationship between the 20 selected startups and NOV, beginning with paid pilot programs. Photo via NOV.com

Houston-based NOV is launching a new growth-stage startup accelerator focused on the upstream oil and gas industry.

NOV, a provider of oil and gas drilling and production operations equipment, has announced its new NOV Supernova Accelerator in collaboration with VentureBuilder, a consulting firm, investor, and accelerator program operator led by a group of Houston innovators.

Applications to the program are open online, and the deadline to apply is July 7. Specifically, NOV is looking for companies working on solutions in data management and analytics, operational efficiency, HSE monitoring, predictive maintenance, and digital twins.

The five-month program establishes a significant relationship between the 20 selected startups and NOV, beginning with paid pilot programs.

"This is not a traditional startup accelerator. This is often a first-client relationship to help disruptive startups refine product-market fit and creatively solve our pressing enterprise problems," reads the program's website.

Selected startups will have direct access to NOV's team and resources. The program will require companies to spend one week per month in person at NOV headquarters in Houston and will provide support surrounding several themes, including go-to-market strategy, pitch practice, and more.

“The NOV Supernova Accelerator offers a strategic approach where the company collaborates with startups in a vendor-client relationship to address specific business needs," says Billy Grandy, general partner of VentureBuilder.vc, in a statement. "Unlike mergers and acquisitions, the venture client model allows corporations like NOV to quickly test and implement new technologies without committing to an acquisition or risking significant investment.”

UH Professor Vedhus Hoskere received a three-year, $505,286 grant from TxDOT for a bridge digitization project. Photo via uh.edu

Houston researcher earns $500,000 grant to tap into digital twin tech for bridge safety

transportation

A University of Houston professor has received a grant from the Texas Department of Transportation (TxDOT) to improve the efficiency and effectiveness of how bridges are inspected in the state.

The $505,286 grant will support the project of Vedhus Hoskere, assistant professor in the Civil and Environmental Engineering Department, over three years. The project, “Development of Digital Twins for Texas Bridges,” will look at how to use drones, cameras, sensors and AI to support Texas' bridge maintenance programs.

“To put this data in context, we create a 3D digital representation of these bridges, called digital twins,” Hoskere said in a statement. “Then, we use artificial intelligence methods to help us find and quantify problems to be concerned about. We’re particularly interested in any structural problems that we can identify - these digital twins help us monitor changes over time and keep a close eye on the bridge. The digital twins can be tremendously useful for the planning and management of our aging bridge infrastructure so that limited taxpayer resources are properly utilized.”

The project began in September and will continue through August 2026. Hoskere is joined on the project by Craig Glennie, the Hugh Roy and Lillie Cranz Cullen Distinguished Chair at Cullen College and director of the National Center for Airborne Laser Mapping, as the project’s co-principal investigator.

According to Hoskere, the project will have implications for Texas's 55,000 bridges (more than twice as many as any other state in the country), which need to be inspected every two years.

Outside of Texas, Hoskere says the project will have international impact on digital twin research. Hoskere chairs a sub-task group of the International Association for Bridge and Structural Engineering (IABSE).

“Our international efforts align closely with this project’s goals and the insights gained globally will enhance our work in Texas while our research at UH contributes to advancing bridge digitization worldwide,” he said. “We have been researching developing digital twins for inspections and management of various infrastructure assets over the past 8 years. This project provides us an opportunity to leverage our expertise to help TxDOT achieve their goals while also advancing the science and practice of better developing these digital twins.”

Last year another UH team earned a $750,000 grant from the National Science Foundation for a practical, Texas-focused project that uses AI. The team was backed by the NSF's Convergence Accelerator for its project to help food-insecure Texans and eliminate inefficiencies within the food charity system.

———

This article originally ran on InnovationMap.
Nick Purday, IT director of emerging digital technology for ConocoPhillips, presented at the Reuters Events Data-Driven Oil and Gas Conference 2023 to help dispel any myths about digital twins. Photo courtesy of Shuttershock.

The secret to unlocking efficiency for the energy transition? Data management

SAVING THE BEST FOR LAST

As Nick Purday, IT director of emerging digital technology for ConocoPhillips, began his presentation at the Reuters Events Data-Driven Oil and Gas Conference 2023 in Houston yesterday, he lamented at missing the opportunity to dispel any myths about digital twins given his second-to-last time slot of the conference.

He may have sold himself short.

No less than a hush fell over the crowd as Purday described one of the more challenging applications of digital twins his team tackled late last year. Purday explained, “The large diagram [up there], that’s two trains from our LNG facility. How long did that take to build? We built that one in a month.”

It’s been years since an upstream oil and gas audience has gasped, but Purday swept the crowd with admiration for the swift, arduous task undertaken by his team.

He then addressed the well-known balance of good/fast/cheap in a rare glimpse under the hood of project planning for such novel technology. “As soon as you move into remote visualization applications – think Alaska, think Norway – then you’re going to get a pretty good return on your investment. Think 3-to-1,” Purday explains. “As you would expect, those simulation digital twins, those are the ones where you get huge value. Optimizing the energy requirements of an LNG facility – huge value associated with that.

“Independently, Forrester did some work recently and came up with a 4-to-1 return, so that fits exactly with our data set,” Purday continued before casually bringing up the foundation for their successful effort.

“If you’ve got good data, then it doesn’t take that long and you can do these pretty effectively,” Purday stated plainly.

Another wave of awe rippled across the room.

In an earlier panel session, Nathan McMahan, data strategy chief at CoP, commented on the shared responsibility model for data in the industry. “When I talked to a lot of people across the organization, three common themes commonly filtered up: What’s the visibility, access, and trust of data?” McMahan observed.

Strong data governance stretches across the organization, but the Wells team, responsible for drilling and completions activity, stood out to McMahan with its approach to data governance.

“They had taken ownership of [the] data and partnered with business units across the globe to standardize best practices between some of the tools and data ingestion methods, even work with suppliers and contractors, [to demonstrate] our expectations for how we take data,” McMahan explained. “They even went a step further to bring an IT resource onto their floor and start to create roles of the owners and the stewards and the custodians of the data. They really laid that good foundation and built upon that with some of the outcomes they wanted to achieve with machine learning techniques and those sorts of things.“

The key, McMahan concluded, is making the “janitorial effort [of] cleaning up data sustainable… and fun.”

The sentiment of fun continued in Purday's late afternoon presentation as he explained how the application went viral upon sharing it with 1 or 2 testers, crashing the email of the lead developer responsible for managing the model as he was flooded with questions and kudos.

Digital twin applications significantly reduce the carbon footprint created by sending personnel to triage onsite concerns for LNG, upstream, and refining facilities in addition to streamlining processes and enabling tremendous savings. The application Purday described allowed his team to discover an issue previously only resolved by flying someone to a remote location where they would likely spend days testing and analyzing the area to diagnose the problem.

The digital twin found the issue in 10 minutes, and the on-site team resolved the problem within the day.

The LNG operations team now consistently starts their day with a bit of a spark, using the digital twin during morning meetings to help with planning and predictive maintenance.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

DOE taps Texas companies for $56M in Strategic Petroleum Reserve deliveries

reserve refill

Two companies with ties to the Houston area have been awarded federal contracts totaling nearly $55.8 million to supply about 1 million barrels of crude oil for the nation’s depleted Strategic Petroleum Reserve.

Houston-based Trafigura Trading will provide two-thirds of the oil, and Dallas-based Energy Transfer Crude Marketing will provide the remaining one-third. Energy Transfer, the parent company of Energy Transfer Crude Marketing, operates a 330-acre oil terminal at the Houston Ship Channel.

The U.S. Department of Energy (DOE), which awarded the contracts, said Trafigura and Energy Transfer will deliver the crude oil from Dec. 1 through Jan. 31 to the Strategic Petroleum Reserve’s Bryan Mound storage site near Freeport.

The Strategic Petroleum Reserve, the world’s largest emergency supply of crude oil, can hold up to 714 million barrels of crude oil across 61 underground salt caverns at four sites along the Gulf Coast. The reserve currently contains 410 million barrels of crude oil. During the pandemic, the Biden administration ordered a 180 million-barrel drawdown from the reserve to help combat high gas prices triggered by Russia’s war with Ukraine.

The four strategic reserve sites are connected to 24 Gulf Coast refineries, and another six refineries in Kentucky, Michigan and Ohio.

“Awarding these contracts marks another step in the important process of refilling this national security asset,” U.S. Energy Secretary Chris Wright said.

In March, Wright estimated it would take $20 billion and many years to fill the Strategic Petroleum Reserve to its maximum capacity, according to Reuters

.

What EPA’s carbon capture and storage permitting announcement means for Texas

The View From HETI

Earlier this month, Texas was granted authority by the federal government for permitting carbon capture and storage (CCS) projects. This move could help the U.S. cut emissions while staying competitive in the global energy game.

In June, the U.S. Environmental Protection Agency (EPA) proposed approving Texas’ request for permitting authority under the Safe Drinking Water Act (SDWA) for Class VI underground injection wells for carbon capture and storage (CCS) in the state under a process called “primacy.” The State of Texas already has permitting authority for other injection wells (Classes I-V). In November, the EPA announced final approval of Texas’ primacy request.

Why This Matters for Texas

Texas is the headquarters for virtually every segment of the energy industry. According to the U.S. Energy Information Administration, Texas is the top crude oil- and natural-gas producing state in the nation. The state has more crude oil refineries and refining capacity than any other state in the nation. Texas produces more electricity than any other state, and the demand for electricity will grow with the development of data centers and artificial intelligence (AI). Simply put, Texas is the backbone of the nation’s energy security and competitiveness. For the nation’s economic competitiveness, it is important that Texas continue to produce more energy with less emissions. CCS is widely regarded as necessary to continue to lower the emissions intensity of the U.S. industrial sector for critical products including power generation, refining, chemicals, steel, cement and other products that our country and world demand.

The Greater Houston Partnership’s Houston Energy Transition Initiative (HETI) has supported efforts to bring CCUS to a broader commercial scale since the initiative’s inception.

“Texas is uniquely positioned to deploy CCUS at scale, with world-class geology, a skilled workforce, and strong infrastructure. We applaud the EPA for granting Texas the authority to permit wells for CCUS, which we believe will result in safe and efficient permitting while advancing technologies that strengthen Texas’ leadership in the global energy market,” said Jane Stricker, Executive Director of HETI and Senior Vice President, Energy Transition at the Greater Houston Partnership.

What is Primacy, and Why is it Important?

Primacy grants permitting authority for Class VI wells for CCS to the Texas Railroad Commission instead of the EPA. Texas is required to follow the same strict standards the EPA uses. The EPA has reviewed Texas’ application and determined it meets those requirements.

Research suggests that Texas has strong geological formations for CO2 storage, a world-class, highly skilled workforce, and robust infrastructure primed for the deployment of CCS. However, federal permitting delays are stalling billions of dollars of private sector investment. There are currently 257 applications under review, nearly one-quarter of which are located in Texas, with some applications surpassing the EPA’s target review period of 24 months. This creates uncertainty for developers and investors and keeps thousands of potential jobs out of reach. By transferring permitting to the state, Texas will apply local resources to issue Class VI permits across the states in a timely manner.

Texas joins North Dakota, Wyoming, Louisiana, West Virginia and Arizona with the authority for regulating Class VI wells.

Is CCS safe?

A 2025 study by Texas A&M University reviewed operational history and academic literature on CCS in the United States. The study analyzed common concerns related to CCS efficacy and safety and found that CCS reduces pollutants including carbon dioxide, particulate matter, sulfur oxides and nitrogen oxides. The research found that the risks of CCS present a low probability of impacting human life and can be effectively managed through existing state and federal regulations and technical monitoring and safety protocols.

What’s Next?

The final rule granting Texas’ primacy will become effective 30 days after publication in the Federal Register. Once in effect, the Texas Railroad Commission will be responsible for permitting wells for carbon capture, use and storage and enforcing their safe operation.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.