Investors in Houston and across Texas are proving to be transformational partners to finance and grow energy hardware startups. Photo via Getty Images

Texas is a national leader in wind and solar, generating more energy in these categories than any other state since 2006 and double that of next placed California. As investment in renewable energy continues to skyrocket, the limitations of the 19th-century grid prevent the industry from realizing the benefits of this 21st-century technology.

For years, Texas has grappled with insufficient infrastructure for its current mix of energy sources, which includes surging renewables. The Alternating Current (AC) grid — the standard since the 1800s — requires matching supply and demand in real-time to maintain a stable frequency, which is complex and costly, especially with renewable energy when the sun doesn’t always shine and the wind doesn’t always blow.

Startup firms are busy developing technologies to solve this issue. For example, it’s possible to modernize the AC grid to control the voltage of the distribution network precisely, to ensure fast adjustments to demand, and to adapt to changes in supply from renewables. Enoda, a U.K.-based scale-up, is an example of an innovative company developing and delivering technology to enable the AC grid to accommodate much higher levels of renewable energy and electrification.

Equally important to these technical innovations are innovations in financing for energy startups. On two levels, investors in Houston and across Texas are proving to be transformational partners to finance and grow energy hardware startups.

1. Innovative Funding Structures

Because of the long timelines, hardware investing requires, in part, more patient capital than the typical Silicon Valley venture capital model prevalent in startup investments. Their playbook is best suited for software companies that develop new features in weeks or months. Energy hardware startups require a longer timeline because of the far greater complexity and upfront capital outlay.

Texas investment firms and family offices are, however, accustomed to investing in complex energy projects with longer development timelines. This complexity presents a high barrier to entry for competitors, which significantly increases the upside potential that risk-capital investors seek should the innovation find market traction. At the same time, up-front capital requirements have decreased considerably, making hardware more appealing to investors.

2. Visionary partnership

Attracting investors and demonstrating early-stage traction differs for hardware companies because of the lengthy pre-revenue R&D process. Software innovators can launch with a minimum viable product, gain a few early customers, and then grow incrementally. By contrast, energy hardware technology must be fully developed from launch. Each Enoda PRIME exchanger, from the first unit sold, represents a piece of critical infrastructure on which households will rely for their electricity supply for its 30-year lifespan. For venture investors who focus on software, it’s easy to assess the health of a software company based on well-established metrics related to customer growth and the cost of customer acquisition.

Hardware investing requires investors to have a much deeper understanding of the problem being solved and assess the quality of the solution objectively rather than rely on early customers for a minimum viable product. Texas investors have been quick to understand the problems that the energy industry must solve around energy balancing and keeping the frequency of a system stable in order to grow renewable energy. Why the keen insight? Because that problem is being solved today by gas power plants. A visionary investor with many years of deep industry perspective is far more likely to appreciate that than a VC firm looking across many industries based on a standard set of metrics.

Visionary partnership is precisely what energy startups need because it’s important not to evaluate the company as it is today but what it will be in five years. Hardware startups need visionary investor partners who understand the importance of parallel pathing fundamental innovation, product development and delivery, and customer development to grow and succeed. Hardware startups succeed only when they can do these things simultaneously—and require investors who can imagine a possible future and understand the path to reach it.

Changing the way investment works

Many energy startups are worthy inheritors of Houston’s bold entrepreneurial spirit that led to technological innovations like deep-sea drilling and hydraulic fracturing. They will continue to need equally bold investors who recognize the world of opportunities at their doorstep.

———

Paul Domjan is the founder and chief policy and global affairs officer at Enoda. Derek Jones and Paul Morico are partners at Baker Botts.

Aggreko’s Energy Transition Solutions division acquired a portfolio of nine community solar projects in the state of New York. Photo courtesy of Aggreko

Houston solar company secures 9 New York solar projects

solar solutions

A Houston-based energy solution company has made some big moves on the East Coast.

Aggreko’s Energy Transition Solutions division acquired a portfolio of nine community solar projects in the state of New York.

The ground-mounted installations will total approximately 59 MW of generating capacity Aggreko ETS also successfully connected the first of the nine projects to the grid, a 5.9 MWdc project in the town of Vernon, 40 miles east of Syracuse.

The nine community solar sites aim to assist low-and-moderate income New Yorkers in benefiting from clean solar energy without residential solar installations.

Aggreko ETS will be in charge of the construction of these projects. Aggreko, which is headquartered in Houston, is actively investing in more sustainable products, fuels, innovative technology, and services to make greener solutions accessible.

“We’re thrilled to complete this important transaction, which reinforces Aggreko’s capabilities as an experienced renewable energy developer, owner, and operator that can deftly structure and execute complicated asset acquisitions to scale its business,” says Prashanth Prakash, Aggreko ETS’s chief commercial officer in a news release.

According to a report, In the fourth quarter, Texas is expected to add about 3.7 gigawatts of solar capacity — more than the combined total for the previous three quarters. Photo via Getty Images

Report: Texas expected to shine as top state for solar installations in 2023

fourth quarter push

When all the numbers are tallied, 2023 should be a very sunny year for solar installations in Texas.

The Solar Energy Industries Association, SEIA, and energy research and consulting firm Wood Mackenzie predict Texas will be the top state for solar installations in 2023. In the fourth quarter, Texas is expected to add about 3.7 gigawatts of solar capacity — more than the combined total for the previous three quarters.

In 2021, Texas added nearly 6.07 gigawatts of solar capacity, with that figure falling to more than 3.66 gigawatts in 2022. But for 2023, SEIA and Wood Mackenzie anticipate Texas having added almost 6.24 gigawatts of solar capacity for residential, business, and utility customers.

A report released last week by SEIA and Wood Mackenzie indicates that sales volume for solar installations has declined in Texas and some other states due in part to higher costs for financing solar equipment. Solar sales volume in Texas started dropping off in late 2022 and has continued to shrink, says the report.

Wood Mackenzie forecasts 13 percent growth for the U.S. residential solar market in 2023. The report predicts the U.S. will have added 33 gigawatts of residential solar capacity in 2023, up from a record-setting 6.5 gigawatts in 2022. The U.S. added 6.5 gigawatts of residential solar capacity in the third quarter of 2023 alone, says the report.

“Solar remains the fastest-growing energy source in the United States, and despite a difficult economic environment, this growth is expected to continue for years to come,” says Abigail Ross Hopper, president and CEO of SEIA. “To maintain this forecasted growth, we must modernize regulations and reduce bureaucratic roadblocks to make it easier for clean energy companies to invest capital and create jobs.”

Solar accounted for nearly half (48 percent) of all new electric-generating capacity during the first three quarters of 2023, bringing total installed solar capacity in the U.S. to 161 gigawatts across 4.7 million installations. By 2028, U.S. solar capacity is expected to reach 377 gigawatts, enough to power more than 65 million homes.

“The U.S. solar industry is on a strong growth trajectory, with expectations of 55 percent growth this year and 10 percent growth in 2024,” says Michelle Davis, head of solar research at Wood Mackenzie.

“Growth is expected to be slower starting in 2026 as various challenges like interconnection constraints become more acute,” she adds. “It’s critical that the industry continue to innovate to maximize the value that solar brings to an increasingly complex grid. Interconnection reform, regulatory modernization, and increasing storage attachment rates will be key tools.”

BP's solar park is scheduled to begin operating in the second half of 2024. Photo via bp.com

BP breaks ground​ on Texas solar farm, plans to open it next year

sun-powered peacock

British energy giant BP, whose U.S. headquarters is in Houston, has started construction on a 187-megawatt solar farm about 10 miles northeast of Corpus Christi.

The Peacock Solar facility will generate power for a nearby chemical complex operated by Gulf Coast Growth Ventures, a joint venture between Spring-based energy company ExxonMobil and SABIC, a Saudi Arabian chemical conglomerate whose products are used to make clothes, food containers, packaging, agricultural film, and construction materials. SABIC’s Americas headquarters is in Houston.

Gulf Coast Growth Ventures opened the plant in 2022. The joint venture says the ethylene cracker and derivatives complex, located northwest of the town of Gregory, employs about 600 people.

BP says the solar project, which is expected to create about 300 construction jobs, will produce enough energy each year to power the equivalent of 34,000 homes. The solar park is scheduled to begin operating in the second half of 2024.

“We want to be good stewards of our environment,” Paul Fritsch, president of Gulf Coast Growth Ventures, says in a BP news release. “Once online, the solar-generated electricity will be used to partially power our plant and help reduce emissions in support of a net-zero future.”

At full capacity, Peacock’s renewable power could keep more than 256,000 metric tons of greenhouse gas emissions out of the atmosphere each year, BP says.

BP’s joint venture partner, British solar company Lightsource BP, is developing the solar project and managing construction on behalf of BP. In 2017, BP bought a 43 percent stake in Lightsource and now holds a 50 percent stake.

Canadian contractor PCL Construction is providing construction and engineering services for the solar setup, and Tempe, Arizona-based First Solar and Norwalk, Connecticut-based GameChange Solar are supplying the solar equipment.

Energy sources are often categorized as renewable or not, but perhaps a more accurate classification focuses on the type of reaction that converts energy into useful matter. Photo by simpson33/Getty Images

How is energy produced?

ENERGY 101

Many think of the Energy Industry as a dichotomy–old vs. new, renewable vs. nonrenewable, good vs. bad. But like most things, energy comes from an array of sources, and each kind has its own unique benefits and challenges. Understanding the multi-faceted identity of currently available energy sources creates an environment in which new ideas for cleaner and more sustainable energy sourcing can proliferate.

At a high level, energy can be broadly categorized by the process of extracting and converting it into a useful form.

Energy Produced from Chemical Reaction

Energy derived from coal, crude oil, natural gas, and biomass is primarily produced as a result of bonds breaking during a chemical reaction. When heated, burned, or fermented, organic matter releases energy, which is converted into mechanical or electrical energy.

These sources can be stored, distributed, and shared relatively easily and do not have to be converted immediately for power consumption. However, the resulting chemical reaction produces environmentally harmful waste products.

Though the processes to extract these organic sources of energy have been refined for many years to achieve reliable and cheap energy, they can be risky and are perceived as invasive to mother nature.

According to the 2022 bp Statistical Review of World Energy, approximately 50% of the world’s energy consumption comes from petroleum and natural gas; another 25% from coal. Though there was a small decline in demand for oil from 2019 to 2021, the overall demand for fossil fuels remained unchanged during the same time frame, mostly due to the increase in natural gas and coal consumption.

Energy Produced from Mechanical Reaction

Energy captured from the earth’s heat or the movement of wind and water results from the mechanical processes enabled by the turning of turbines in source-rich environments. These turbines spin to produce electricity inside a generator.

Solar energy does not require the use of a generator but produces electricity due to the release of electrons from the semiconducting materials found on a solar panel. The electricity produced by geothermal, wind, solar, and hydropower is then converted from direct current to alternating current electricity.

Electricity is most useful for immediate consumption, as storage requires the use of batteries–a process that turns electrical energy into chemical energy that can then be accessed in much the same way that coal, crude oil, natural gas, and biomass produce energy.

Energy Produced from a Combination of Reactions

Hydrogen energy comes from a unique blend of both electrical and chemical energy processes. Despite hydrogen being the most abundant element on earth, it is rarely found on its own, requiring a two-step process to extract and convert energy into a usable form. Hydrogen is primarily produced as a by-product of fossil fuels, with its own set of emissions challenges related to separating the hydrogen from the hydrocarbons.

Many use electrolysis to separate hydrogen from other elements before performing a chemical reaction to create electrical energy inside of a contained fuel cell. The electrolysis process is certainly a more environmentally-friendly solution, but there are still great risks with hydrogen energy–it is highly flammable, and its general energy output is less than that of other electricity-generating methods.

Energy Produced from Nuclear Reaction

Finally, energy originating from the splitting of an atom’s nucleus, mostly through nuclear fission, is yet another way to produce energy. A large volume of heat is released when an atom is bombarded by neutrons in a nuclear power plant, which is then converted to electrical energy.

This process also produces a particularly sensitive by-product known as radiation, and with it, radioactive waste. The proper handling of radiation and radioactive waste is of utmost concern, as its effects can be incredibly damaging to the environment surrounding a nuclear power plant.

Nuclear fission produces minimal carbon, so nuclear energy is oft considered environmentally safe–as long as strict protocols are followed to ensure proper storage and disposal of radiation and radioactive waste.

Nuclear to Mechanical to Chemical?

Interestingly enough, the Earth’s heat comes from the decay of radioactive materials in the Earth’s core, loosely linking nuclear power production back to geothermal energy production.

It’s also clear the conversion of energy into electricity is the cleanest option for the environment, yet adequate infrastructure remains limited in supply and accessibility. If not consumed immediately as electricity, energy is thus converted into a chemical form for the convenience of storage and distribution it provides.

Perhaps the expertise and talent of Houstonians serving the flourishing academic and industrial sectors of energy development will soon resolve many of our current energy challenges by exploring further the circular dynamic of the energy environment. Be sure to check out our Events Page to find the networking event that best serves your interest in the Energy Transition.


------

Lindsey Ferrell is a contributing writer to EnergyCapitalHTX and founder of Guerrella & Co.

Going solar is now easier thanks to city and federal help. Photo courtesy of Houston Solar Tour

Houston charges up new program to help locals buy and install affordable solar panels

sunny days

Alternative-energy-seeking locals now have a sunny way to buy into a solar. The City of Houston has launched Texas Solar SwitchHouston, a new program aimed at helping Houstonians purchase and install rooftop solar panels and battery storage.

In partnership with Solar United Neighbors, the Solar Switch program offers hassle-free way to purchase solar panels by creating a massive, group discount for residents, be it home or small business needs.

This comes with the new Inflation Reduction Act’s clean energy incentives and is part of the City of Houston's Climate Action Plan goal to generate 5 million MWh per year of local solar, per a press release. Customers who install solar also receive a 30-percent tax credit, thanks to the The Inflation Reduction Act.

Registration for the program is free and available online. The City of Houston assures that there is "no obligation for homeowners to purchase solar panels." Discounts and installers are determined through a competitive auction process, per the City.

"With energy prices increasing, homeowners and small businesses are looking for opportunities to save on their energy bills and increase their resilience to climate-related events," said Mayor Sylvester Turner. "Texas Solar Switch Houston provides our community with a simple and straightforward way to become better informed about solar energy and access a competitive offer from a vetted, experienced solar installation company."

Signed and passed into law by the Biden Administration in August, the Inflation Reduction Act will invest some $369 billion in domestic energy production and manufacturing with a goal of reducing carbon emissions by 40 percent by 2030. That federal mandate means locals can now take steps towards power backup, while potentially easing up on the beleaguered Texas grid.

“More and more Houstonians are looking to solar and battery storage for self-sufficiency, which has the added benefit of making our grid more resilient,” said Hanna Mitchell, Texas program director for Solar United Neighbors, in a statement. “With the recent passage of the IRA, now is a particularly good time to go solar.”

------

This article originally ran on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Global law firm names partner to build growing infrastructure, energy transition business

new hire

An international law firm has named a new partner in the Houston office to help build its growing infrastructure and energy transition capabilities

Weil, Gotshal & Manges announced infrastructure lawyer Jacqui Bogucki has returned to the firm.

"Jacqui will be an extremely valuable addition to our growing Houston team,” says Weil Executive Partner Barry Wolf in a news release. “Her significant infrastructure experience – including in the digital sector – and strong relationships with leading investment professionals will help to advance our fast-growing infrastructure and energy transition capabilities, and will be an immediate value-add to our clients globally.”

She will advise private equity sponsors and strategic clients on a wide range of corporate transactions. Her focus will include infrastructure, digital, technology, energy transition, and oil and gas sectors. Previously, Bogucki was a partner in the Mergers & Acquisitions practice at Simpson Thacher & Bartlett LLP. Her previous stint at Weil was from 2014 through 2018.

“I am so pleased to have the opportunity to return to Weil, where I began my legal career,” says Bogucki in a news release. “It is an incredibly exciting time to be joining the Firm as it further builds out its infrastructure and energy transition capabilities. I look forward to reconnecting with former colleagues and leveraging my experience to provide the highest quality service to our clients.”

Since 2023, notable energy partners Omar Samji, Chris Bennett, Cody Carper, and Irina Tsveklova have joined Weil in Houston – with Steven Lorch joining in New York just last month.

Tesla Q1 profit falls by more than half, but stock jumps amid production of cheaper vehicles

EV evolution

Tesla’s first-quarter net income plummeted 55 percent, but its stock price surged in after-hours trading Tuesday as the company said it would accelerate production of new, more affordable vehicles.

The Austin, Texas, company said it made $1.13 billion from January through March compared with $2.51 billion in the same period a year ago.

Investors and analysts were looking for some sign that Tesla will take steps to stem its stock's slide this year and grow sales. The company did that in a letter to investors Tuesday, saying that production of smaller, more affordable models will start ahead of previous guidance.

The smaller models, which apparently include the Model 2 small car that is expected to cost around $25,000, will use new generation vehicle underpinnings and some features of current models. The company said it would be built on the same manufacturing lines as its current products.

On a conference call with analysts, CEO Elon Musk said he expects production to start in the second half of next year “if not late this year.”

New factories or massive new production lines won't be needed for the new vehicles, Musk said.

“This update may result in achieving less cost reduction than previously expected but enables us to prudently grow our vehicle volumes in a more capex efficient manner during uncertain times,” the investor letter said.

But Musk gave few specifics on just what the new vehicles will be and whether they would be variants of current models. “I think we’ve said all we will on that front,” he told an analyst.

He did say that he expects Tesla to sell more vehicles this year than last year's 1.8 million.

The company also appears to be counting on a vehicle built to be a fully autonomous robotaxi as the catalyst for future earnings growth. Musk has said the robotaxi will be unveiled on Aug. 8.

Shares of Tesla rose 11 percent in trading after Tuesday’s closing bell, but they are down more than 40 percent this year. The S&P 500 index is up about 5 percent for the year.

Morningstar analyst Seth Goldstein said the company gave guidance about its future that was clearer than in the past, allaying investor concerns about production of the Model 2 and future growth. “I think for now we're likely to see the stock stabilize," he said. “I think Tesla provided an outlook today that can make investors feel more assured that management is righting the ship.”

But if sales fall again in the second quarter, the guidance will go out the window and concerns will return, he said.

Tesla reported that first-quarter revenue was $21.3 billion, down 9 percent from last year as worldwide sales dropped nearly 9 percent due to increased competition and slowing demand for electric vehicles.

Excluding one-time items such as stock-based compensation, Tesla made 45 cents per share, falling short of analyst estimates of 49 cents, according to FactSet.

The company’s gross profit margin, the percentage of revenue it gets to keep after expenses, fell once again to 17.4 percent. A year ago it was 19.3 percent, and it peaked at 29.1 percent in the first quarter of 2022.

Over the weekend, Tesla lopped $2,000 off the price of the Models Y, S and X in the U.S. and reportedly made cuts in other countries including China as global electric vehicle sales growth slowed. It also slashed the cost of “Full Self Driving” by one third to $8,000.

Tesla also announced last week that it would cut 10 percent of its 140,000 employees, and Chief Financial Officer Vaibhav Taneja said Tuesday the cuts will be across the board. Growth companies build up duplication that needs to be pruned like a tree to continue growing, he said.

Musk has been touting the robotaxi as a growth catalyst for Tesla since the hardware for it went on sale late in 2015.

In 2019, Musk promised a fleet of autonomous robotaxis by 2020 that would bring income to Tesla owners and make their car values appreciate. Instead, they've declined with price cuts, as the autonomous robotaxis have been delayed year after year while being tested by owners as the company gathers road data for its computers.

Neither Musk nor other Tesla executives on Tuesday's call would specify when they expect Tesla vehicles to drive themselves as well as humans do. Instead, Musk touted the latest version of Tesla’s autonomous driving software — which the company misleadingly brands as “Full Self Driving” despite the fact that it still requires human supervision — and said that “it’s only a matter of time before we exceed the reliability of humans, and not much time at that.”

It didn’t take the Tesla CEO long to begin expounding on the possibility of turning on self-driving capabilities for millions of Tesla vehicles at once, although again without estimating when that might actually occur. He went on to insist that “if somebody doesn’t believe that Tesla is going to solve autonomy, I think they should not be an investor in the company.”

Early last year the National Highway Traffic Safety Administration made Tesla recall its “Full Self-Driving” system because it can misbehave around intersections and doesn’t always follow speed limits. Tesla's less-sophisticated Autopilot system also was recalled to bolster its driver monitoring system.

Some experts don't think any system that relies solely on cameras like Tesla's can ever reach full autonomy.

Chevron launches $500M clean energy fund to target low carbon fuels, advanced materials

fresh funding

Chevron Technology Ventures has announced its latest fund raised to deploy capital into clean energy technology.

CTV's Future Energy Fund III has reportedly launched with $500 million — an increase from its second fund from 2021 that was valued at $400 million. The inaugural Future Energy Fund was established in 2018. Each fund has targeted separate technologies — from capture, emerging mobility, and energy storage in fund I to industrial decarbonization, emerging mobility, energy decentralization, and circular economy in fund II.

"Future Energy Fund III, launched in 2024, will continue to look forward in the areas of focus for the earlier two funds and aims to expand investment in the areas of novel low carbon fuels, advanced materials, and transforming carbon to higher-value products," reads Chevron's website describing the Future Energy Funds.

The first two funds have invested in over 30 companies and has more than 250 other investors supporting low-carbon innovations.

CTV, based in Houston, has strategic partnerships with organizations within the Houston innovation ecosystem, including Greentown Labs, Rice Alliance for Technology and Entrepreneurship, the Ion, The Cannon, and the HX Venture Fund.

"CTV engages a range of startup companies, investors, incubators and accelerators to access technology that can be used across Chevron now and in the future to enable us to operate more efficiently, to lower the carbon intensity of our operations and launch viable new businesses," reads the CTV site.

Founded in 1999, CTV invests in emerging energy technologies as well as incubating startups in its Catalyst Program. Last month, CTV added Cerebre, a software-as-a-service company that works with its customers to unlock and leverage data to tap into AI tools and digitization, to the Catalyst Program.