The company, based in Tomball, has developed a mobile, scalable energy source that can be used anywhere, anytime. Image via kaizencleanenergy.com

An innovative Houston-area company is on a mission to make using hydrogen energy easier and cheaper.

A recently announced partnership with investment firm, Balcor Companies, will help make this a reality as Kaizen Clean Energy looks to make hydrogen energy more accessible, reliable and affordable. Announced July 6, Balcor now has an ownership stake in Kaizen. The terms of the deal were not disclosed.

The company, based in Tomball, has developed a “micro grid” hydrogen power station — a mobile, scalable energy source that can be used anywhere, anytime.

Balcor Companies Founder and Director Chris Balat says his company is looking at their stake in KCE as an investment in shaping a more sustainable world.

“We are thrilled to make our first foray into the energy sector with Kaizen Energy as our trusted partner,” he says in a statement. "Our association with Kaizen is a testament to our commitment towards a sustainable future, driving positive change in the world while delivering value to our stakeholders.”

Kaizen's mission is to succeed where electric grids fail. One fallback source to help strained electric grids has typically been diesel generators. However, diesel generators increase local emissions which produce a significant amount of air pollution and health concerns. Kaizen’s hydrogen generators can be used to power buildings, homes, hospitals, data centers, events, and farm equipment. They are portable, which means it does not require any excessive infrastructure.

“Our system allows customers the ability to have renewable energy anywhere in the world in a very short time frame,” said Eric Smith, co-founder of KCE. “For EV charging, for power generation, to replace a diesel generator.”

Smith tells EnergyCapitalhtx the concept is very attractive to corporations who lease buildings as building out a permanent infrastructure could be costly and time consuming.

Robert Meaney, a Texas Tech engineering graduate, founded Kaizen Clean Energy in 2020, along with Eric Smith and Craig Klaasmeyer. Meaney designed the technology using a mixture of methanol and water to create hydrogen. A 330-gallon tank of the mixture produces about 150 kilograms of hydrogen — or 1.6 megawatt-hours of energy. The mixture lowers the risks of many of the drawbacks of hydrogen usage. For example, it can be stored for longer periods and transported long distances safely.

The microgrid fits into a small container and can be dropped on site at remote locations or in heavily congested grid areas. It also eliminates the cost of hydrogen transportation by generating hydrogen on-site with commonly available methanol, which can be both used for hydrogen fuel and converted to electricity for electric vehicle charging. This microgrid technology can both connect to the grid to supplement available power, or can be used during a power outage.

To put this energy source to use, KCE has partnered with Extreme E, an international off-road racing series that is part of Formula 1 and uses electric SUV’s to race in remote parts of the world. Kaizen’s units are also being used at a fleet-charging location in Los Angeles.

Oceanit's lab, H2XCEL — short for “Hydrogen Accelerator” — aims to integrate hydrogen into the current energy infrastructure, a serious cost-saver for companies looking to make the energy transition. Photo via Getty Images

New lab opens in Houston to help make pipelines safer for hydrogen transport

HOU-DRYGEN

An innovative Hawaii-based technology company is saying aloha to Houston with the opening of a unique test laboratory that aims to increase hydrogen pipeline safety. It is the latest sign that Houston is at the forefront of the movement to hydrogen energy.

The lab, H2XCEL — short for “Hydrogen Accelerator” — aims to integrate hydrogen into the current energy infrastructure, a serious cost-saver for companies looking to make the energy transition. Oceanit, a Honolulu-based technology company, is behind the lab.

H2XCEL will be the only lab in the U.S. capable of testing hydrogen and methane mixtures at high temperatures and pressures. Its aim is to protect pipelines from hydrogen embrittlement — when small hydrogen molecules penetrate pipe walls and damage the metal, potentially causing cracks, leaks, and failures.

The lab uses Oceanit’s HydroPel pipeline nanotechnology, developed with the support of the U.S. Department of Energy. Photo courtesy of Oceanit

“The launch of this testing facility is a major milestone. It is the only lab of its kind in the U.S. and the work underway at H2XCEL will accelerate the transition toward a hydrogen-driven economy,” Patrick Sullivan, the CEO and founder of Oceanit, says in a news release. “We see a toolset emerging that will enable the U.S. to accelerate toward a low-carbon future.”

Houston was the obvious choice to launch the new lab, says Oceanit’s Direct of Marketing James Andrews.

“Houston is the energy capital of the world," Andrews explains. "Oceanit knew that if we wanted to make inroads with decarbonization technologies, we needed to be physically present there.”

H2XCEL uses Oceanit’s HydroPel pipeline nanotechnology, developed with the support of the U.S. Department of Energy. It is a surface treatment that protects metals, eliminating the need to build new pipelines using expensive, hydrogen-resistant metals. The estimated cost of building new hydrogen pipelines is approximately $4.65 million per mile, according to a press release from the company. In contrast, HydroPel can be applied to existing pipelines to prevent damage, and the cost to refurbish one mile of existing steel pipeline is less than 10 percent of the cost per mile for new pipeline construction.

One of the main objectives of the new Houston lab will be to test hydrogen-methane blends under varying conditions to determine how to use HydroPel safely. By enabling the energy sector to reduce its climate impact while continuing to provide energy using existing infrastructure, methane-hydrogen blends capitalize on hydrogen’s carbon-free energy potential and its positive impact on climate change.

“We want to create a situation where we can speed up energy transition,” says Andrews. “By blending it into a safer environment, we can make it attractive to bigger players.”

Oceanit already has a Houston presence where the team is focused on several other technologies related to hydrogen, including HeatX, a water-based technology for heat transfer surfaces in refineries, power plants, and more, as well as their HALO system, which utilizes directed energy to produce clean hydrogen wastewater and other waste byproducts produced in industrial businesses.

A recent report issued by Rice University’s Baker Institute for Public Policy about the hydrogen economy

in Texas insists that the Lone Star State is an ideal hub for hydrogen as an energy source. The report explains that with the state’s existing oil and gas infrastructure, Texas is the best spot to affordably develop hydrogen while managing economic challenges. The Houston region already produces and consumes a third of the nation’s hydrogen, according to the report, and has more than 50 percent of the country’s dedicated hydrogen pipelines.

Energy sources are often categorized as renewable or not, but perhaps a more accurate classification focuses on the type of reaction that converts energy into useful matter. Photo by simpson33/Getty Images

How is energy produced?

ENERGY 101

Many think of the Energy Industry as a dichotomy–old vs. new, renewable vs. nonrenewable, good vs. bad. But like most things, energy comes from an array of sources, and each kind has its own unique benefits and challenges. Understanding the multi-faceted identity of currently available energy sources creates an environment in which new ideas for cleaner and more sustainable energy sourcing can proliferate.

At a high level, energy can be broadly categorized by the process of extracting and converting it into a useful form.

Energy Produced from Chemical Reaction

Energy derived from coal, crude oil, natural gas, and biomass is primarily produced as a result of bonds breaking during a chemical reaction. When heated, burned, or fermented, organic matter releases energy, which is converted into mechanical or electrical energy.

These sources can be stored, distributed, and shared relatively easily and do not have to be converted immediately for power consumption. However, the resulting chemical reaction produces environmentally harmful waste products.

Though the processes to extract these organic sources of energy have been refined for many years to achieve reliable and cheap energy, they can be risky and are perceived as invasive to mother nature.

According to the 2022 bp Statistical Review of World Energy, approximately 50% of the world’s energy consumption comes from petroleum and natural gas; another 25% from coal. Though there was a small decline in demand for oil from 2019 to 2021, the overall demand for fossil fuels remained unchanged during the same time frame, mostly due to the increase in natural gas and coal consumption.

Energy Produced from Mechanical Reaction

Energy captured from the earth’s heat or the movement of wind and water results from the mechanical processes enabled by the turning of turbines in source-rich environments. These turbines spin to produce electricity inside a generator.

Solar energy does not require the use of a generator but produces electricity due to the release of electrons from the semiconducting materials found on a solar panel. The electricity produced by geothermal, wind, solar, and hydropower is then converted from direct current to alternating current electricity.

Electricity is most useful for immediate consumption, as storage requires the use of batteries–a process that turns electrical energy into chemical energy that can then be accessed in much the same way that coal, crude oil, natural gas, and biomass produce energy.

Energy Produced from a Combination of Reactions

Hydrogen energy comes from a unique blend of both electrical and chemical energy processes. Despite hydrogen being the most abundant element on earth, it is rarely found on its own, requiring a two-step process to extract and convert energy into a usable form. Hydrogen is primarily produced as a by-product of fossil fuels, with its own set of emissions challenges related to separating the hydrogen from the hydrocarbons.

Many use electrolysis to separate hydrogen from other elements before performing a chemical reaction to create electrical energy inside of a contained fuel cell. The electrolysis process is certainly a more environmentally-friendly solution, but there are still great risks with hydrogen energy–it is highly flammable, and its general energy output is less than that of other electricity-generating methods.

Energy Produced from Nuclear Reaction

Finally, energy originating from the splitting of an atom’s nucleus, mostly through nuclear fission, is yet another way to produce energy. A large volume of heat is released when an atom is bombarded by neutrons in a nuclear power plant, which is then converted to electrical energy.

This process also produces a particularly sensitive by-product known as radiation, and with it, radioactive waste. The proper handling of radiation and radioactive waste is of utmost concern, as its effects can be incredibly damaging to the environment surrounding a nuclear power plant.

Nuclear fission produces minimal carbon, so nuclear energy is oft considered environmentally safe–as long as strict protocols are followed to ensure proper storage and disposal of radiation and radioactive waste.

Nuclear to Mechanical to Chemical?

Interestingly enough, the Earth’s heat comes from the decay of radioactive materials in the Earth’s core, loosely linking nuclear power production back to geothermal energy production.

It’s also clear the conversion of energy into electricity is the cleanest option for the environment, yet adequate infrastructure remains limited in supply and accessibility. If not consumed immediately as electricity, energy is thus converted into a chemical form for the convenience of storage and distribution it provides.

Perhaps the expertise and talent of Houstonians serving the flourishing academic and industrial sectors of energy development will soon resolve many of our current energy challenges by exploring further the circular dynamic of the energy environment. Be sure to check out our Events Page to find the networking event that best serves your interest in the Energy Transition.


------

Lindsey Ferrell is a contributing writer to EnergyCapitalHTX and founder of Guerrella & Co.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston cleantech startup Helix Earth lands $1.2M NSF grant

federal funding

Renewable equipment manufacturer Helix Earth Technologies is one of three Houston-based companies to secure federal funding through the Small Business Innovation Research (SBIR) Phase II grant program in recent months.

The company—which was founded based on NASA technology, spun out of Rice University and has been incubated at Greentown Labs—has received approximately $1.2 million from the National Science Foundation to develop its high-efficiency retrofit dehumidification systems that aim to reduce the energy consumption of commercial AC units. The company reports that its technology has the potential to cut AC energy use by up to 50 percent.

"This award validates our vision and propels our impact forward with valuable research funding and the prestige of the NSF stamp of approval," Rawand Rasheed, Helix CEO and founder, shared in a LinkedIn post. "This award is a reflection our exceptional team's grit, expertise, and collaborative spirit ... This is just the beginning as we continue pushing for a sustainable future."

Two other Houston-area companies also landed $1.2 million in NSF SBIR Phase II funding during the same period:

  • Resilitix Intelligence, a disaster AI startup that was founded shortly after Hurricane Harvey, that works to "reduce the human and economic toll of disasters" by providing local and state organizations and emergency response teams with near-real-time, AI-driven insights to improve response speed, save lives and accelerate recovery
  • Conroe-based Fluxworks Inc., founded in 2021 at Texas A&M, which provides magnetic gear technology for the space industry that has the potential to significantly enhance in-space manufacturing and unlock new capabilities for industries by allowing advanced research and manufacturing in microgravity

The three grants officially rolled out in early September 2025 and are expected to run through August 2027, according to the NSF. The SBIR Phase II grants support in-depth research and development of ideas that showed potential for commercialization after receiving Phase I grants from government agencies.

However, congressional authority for the program, often called "America's seed fund," expired on September 30, 2025, and has stalled since the recent government shutdown. Government agencies cannot issue new grants until Congress agrees on a path forward. According to SBIR.gov, "if no further action is taken by Congress, federal agencies may not be able to award funding under SBIR/STTR programs and SBIR/STTR solicitations may be delayed, cancelled, or rescinded."

Mars Materials makes breakthrough in clean carbon fiber production

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

Tesla no longer world's biggest EV maker as sales drop for second year

EV Update

Tesla lost its crown as the world’s bestselling electric vehicle maker as a customer revolt over Elon Musk’s right-wing politics, expiring U.S. tax breaks for buyers and stiff overseas competition pushed sales down for a second year in a row.

Tesla said that it delivered 1.64 million vehicles in 2025, down 9% from a year earlier.

Chinese rival BYD, which sold 2.26 million vehicles last year, is now the biggest EV maker.

It's a stunning reversal for a car company whose rise once seemed unstoppable as it overtook traditional automakers with far more resources and helped make Musk the world's richest man. The sales drop came despite President Donald Trump's marketing effort early last year when he called a press conference to praise Musk as a “patriot” in front of Teslas lined up on the White House driveway, then announced he would be buying one, bucking presidential precedent to not endorse private company products.

For the fourth quarter, Tesla sales totaled 418,227, falling short of even the much reduced 440,000 target that analysts recently polled by FactSet had expected. Sales were hit hard by the expiration of a $7,500 tax credit for electric vehicle purchases that was phased out by the Trump administration at the end of September.

Tesla stock fell 2.6% to $438.07 on Friday.

Even with multiple issues buffeting the company, investors are betting that Tesla CEO Musk can deliver on his ambitions to make Tesla a leader in robotaxi services and get consumers to embrace humanoid robots that can perform basic tasks in homes and offices. Reflecting that optimism, the stock finished 2025 with a gain of approximately 11%.

The latest quarter was the first with sales of stripped-down versions of the Model Y and Model 3 that Musk unveiled in early October as part of an effort to revive sales. The new Model Y costs just under $40,000 while customers can buy the cheaper Model 3 for under $37,000. Those versions are expected to help Tesla compete with Chinese models in Europe and Asia.

For fourth-quarter earnings coming out in late January, analysts are expecting the company to post a 3% drop in sales and a nearly 40% drop in earnings per share, according to FactSet. Analysts expect the downward trend in sales and profits to eventually reverse itself as 2026 rolls along.

Musk said earlier last year that a “major rebound” in sales was underway, but investors were unruffled when that didn't pan out, choosing instead to focus on Musk's pivot to different parts of business. He has has been saying the future of the company lies with its driverless robotaxis service, its energy storage business and building robots for the home and factory — and much less with car sales.

Tesla started rolling out its robotaxi service in Austin in June, first with safety monitors in the cars to take over in case of trouble, then testing without them. The company hopes to roll out the service in several cities this year.

To do that successfully, it needs to take on rival Waymo, which has been operating autonomous taxis for years and has far more customers. It also will also have to contend with regulatory challenges. The company is under several federal safety investigations and other probes. In California, Tesla is at risk of temporarily losing its license to sell cars in the state after a judge there ruled it had misled customers about their safety.

“Regulatory is going to be a big issue,” said Wedbush Securities analyst Dan Ives, a well-known bull on the stock. “We're dealing with people's lives.”

Still, Ives said he expects Tesla's autonomous offerings will soon overcome any setbacks.

Musk has said he hopes software updates to his cars will enable hundreds of thousands of Tesla vehicles to operate autonomously with zero human intervention by the end of this year. The company is also planning to begin production of its AI-powered Cybercab with no steering wheel or pedals in 2026.

To keep Musk focused on the company, Tesla’s directors awarded Musk a potentially enormous new pay package that shareholders backed at the annual meeting in November.

Musk scored another huge windfall two weeks ago when the Delaware Supreme Court reversed a decision that deprived him of a $55 billion pay package that Tesla doled out in 2018.

Musk could become the world's first trillionaire later this year when he sells shares of his rocket company SpaceX to the public for the first time in what analysts expect would be a blockbuster initial public offering.