The company, based in Tomball, has developed a mobile, scalable energy source that can be used anywhere, anytime. Image via kaizencleanenergy.com

An innovative Houston-area company is on a mission to make using hydrogen energy easier and cheaper.

A recently announced partnership with investment firm, Balcor Companies, will help make this a reality as Kaizen Clean Energy looks to make hydrogen energy more accessible, reliable and affordable. Announced July 6, Balcor now has an ownership stake in Kaizen. The terms of the deal were not disclosed.

The company, based in Tomball, has developed a “micro grid” hydrogen power station — a mobile, scalable energy source that can be used anywhere, anytime.

Balcor Companies Founder and Director Chris Balat says his company is looking at their stake in KCE as an investment in shaping a more sustainable world.

“We are thrilled to make our first foray into the energy sector with Kaizen Energy as our trusted partner,” he says in a statement. "Our association with Kaizen is a testament to our commitment towards a sustainable future, driving positive change in the world while delivering value to our stakeholders.”

Kaizen's mission is to succeed where electric grids fail. One fallback source to help strained electric grids has typically been diesel generators. However, diesel generators increase local emissions which produce a significant amount of air pollution and health concerns. Kaizen’s hydrogen generators can be used to power buildings, homes, hospitals, data centers, events, and farm equipment. They are portable, which means it does not require any excessive infrastructure.

“Our system allows customers the ability to have renewable energy anywhere in the world in a very short time frame,” said Eric Smith, co-founder of KCE. “For EV charging, for power generation, to replace a diesel generator.”

Smith tells EnergyCapitalhtx the concept is very attractive to corporations who lease buildings as building out a permanent infrastructure could be costly and time consuming.

Robert Meaney, a Texas Tech engineering graduate, founded Kaizen Clean Energy in 2020, along with Eric Smith and Craig Klaasmeyer. Meaney designed the technology using a mixture of methanol and water to create hydrogen. A 330-gallon tank of the mixture produces about 150 kilograms of hydrogen — or 1.6 megawatt-hours of energy. The mixture lowers the risks of many of the drawbacks of hydrogen usage. For example, it can be stored for longer periods and transported long distances safely.

The microgrid fits into a small container and can be dropped on site at remote locations or in heavily congested grid areas. It also eliminates the cost of hydrogen transportation by generating hydrogen on-site with commonly available methanol, which can be both used for hydrogen fuel and converted to electricity for electric vehicle charging. This microgrid technology can both connect to the grid to supplement available power, or can be used during a power outage.

To put this energy source to use, KCE has partnered with Extreme E, an international off-road racing series that is part of Formula 1 and uses electric SUV’s to race in remote parts of the world. Kaizen’s units are also being used at a fleet-charging location in Los Angeles.

Oceanit's lab, H2XCEL — short for “Hydrogen Accelerator” — aims to integrate hydrogen into the current energy infrastructure, a serious cost-saver for companies looking to make the energy transition. Photo via Getty Images

New lab opens in Houston to help make pipelines safer for hydrogen transport

HOU-DRYGEN

An innovative Hawaii-based technology company is saying aloha to Houston with the opening of a unique test laboratory that aims to increase hydrogen pipeline safety. It is the latest sign that Houston is at the forefront of the movement to hydrogen energy.

The lab, H2XCEL — short for “Hydrogen Accelerator” — aims to integrate hydrogen into the current energy infrastructure, a serious cost-saver for companies looking to make the energy transition. Oceanit, a Honolulu-based technology company, is behind the lab.

H2XCEL will be the only lab in the U.S. capable of testing hydrogen and methane mixtures at high temperatures and pressures. Its aim is to protect pipelines from hydrogen embrittlement — when small hydrogen molecules penetrate pipe walls and damage the metal, potentially causing cracks, leaks, and failures.

The lab uses Oceanit’s HydroPel pipeline nanotechnology, developed with the support of the U.S. Department of Energy. Photo courtesy of Oceanit

“The launch of this testing facility is a major milestone. It is the only lab of its kind in the U.S. and the work underway at H2XCEL will accelerate the transition toward a hydrogen-driven economy,” Patrick Sullivan, the CEO and founder of Oceanit, says in a news release. “We see a toolset emerging that will enable the U.S. to accelerate toward a low-carbon future.”

Houston was the obvious choice to launch the new lab, says Oceanit’s Direct of Marketing James Andrews.

“Houston is the energy capital of the world," Andrews explains. "Oceanit knew that if we wanted to make inroads with decarbonization technologies, we needed to be physically present there.”

H2XCEL uses Oceanit’s HydroPel pipeline nanotechnology, developed with the support of the U.S. Department of Energy. It is a surface treatment that protects metals, eliminating the need to build new pipelines using expensive, hydrogen-resistant metals. The estimated cost of building new hydrogen pipelines is approximately $4.65 million per mile, according to a press release from the company. In contrast, HydroPel can be applied to existing pipelines to prevent damage, and the cost to refurbish one mile of existing steel pipeline is less than 10 percent of the cost per mile for new pipeline construction.

One of the main objectives of the new Houston lab will be to test hydrogen-methane blends under varying conditions to determine how to use HydroPel safely. By enabling the energy sector to reduce its climate impact while continuing to provide energy using existing infrastructure, methane-hydrogen blends capitalize on hydrogen’s carbon-free energy potential and its positive impact on climate change.

“We want to create a situation where we can speed up energy transition,” says Andrews. “By blending it into a safer environment, we can make it attractive to bigger players.”

Oceanit already has a Houston presence where the team is focused on several other technologies related to hydrogen, including HeatX, a water-based technology for heat transfer surfaces in refineries, power plants, and more, as well as their HALO system, which utilizes directed energy to produce clean hydrogen wastewater and other waste byproducts produced in industrial businesses.

A recent report issued by Rice University’s Baker Institute for Public Policy about the hydrogen economy

in Texas insists that the Lone Star State is an ideal hub for hydrogen as an energy source. The report explains that with the state’s existing oil and gas infrastructure, Texas is the best spot to affordably develop hydrogen while managing economic challenges. The Houston region already produces and consumes a third of the nation’s hydrogen, according to the report, and has more than 50 percent of the country’s dedicated hydrogen pipelines.

Energy sources are often categorized as renewable or not, but perhaps a more accurate classification focuses on the type of reaction that converts energy into useful matter. Photo by simpson33/Getty Images

How is energy produced?

ENERGY 101

Many think of the Energy Industry as a dichotomy–old vs. new, renewable vs. nonrenewable, good vs. bad. But like most things, energy comes from an array of sources, and each kind has its own unique benefits and challenges. Understanding the multi-faceted identity of currently available energy sources creates an environment in which new ideas for cleaner and more sustainable energy sourcing can proliferate.

At a high level, energy can be broadly categorized by the process of extracting and converting it into a useful form.

Energy Produced from Chemical Reaction

Energy derived from coal, crude oil, natural gas, and biomass is primarily produced as a result of bonds breaking during a chemical reaction. When heated, burned, or fermented, organic matter releases energy, which is converted into mechanical or electrical energy.

These sources can be stored, distributed, and shared relatively easily and do not have to be converted immediately for power consumption. However, the resulting chemical reaction produces environmentally harmful waste products.

Though the processes to extract these organic sources of energy have been refined for many years to achieve reliable and cheap energy, they can be risky and are perceived as invasive to mother nature.

According to the 2022 bp Statistical Review of World Energy, approximately 50% of the world’s energy consumption comes from petroleum and natural gas; another 25% from coal. Though there was a small decline in demand for oil from 2019 to 2021, the overall demand for fossil fuels remained unchanged during the same time frame, mostly due to the increase in natural gas and coal consumption.

Energy Produced from Mechanical Reaction

Energy captured from the earth’s heat or the movement of wind and water results from the mechanical processes enabled by the turning of turbines in source-rich environments. These turbines spin to produce electricity inside a generator.

Solar energy does not require the use of a generator but produces electricity due to the release of electrons from the semiconducting materials found on a solar panel. The electricity produced by geothermal, wind, solar, and hydropower is then converted from direct current to alternating current electricity.

Electricity is most useful for immediate consumption, as storage requires the use of batteries–a process that turns electrical energy into chemical energy that can then be accessed in much the same way that coal, crude oil, natural gas, and biomass produce energy.

Energy Produced from a Combination of Reactions

Hydrogen energy comes from a unique blend of both electrical and chemical energy processes. Despite hydrogen being the most abundant element on earth, it is rarely found on its own, requiring a two-step process to extract and convert energy into a usable form. Hydrogen is primarily produced as a by-product of fossil fuels, with its own set of emissions challenges related to separating the hydrogen from the hydrocarbons.

Many use electrolysis to separate hydrogen from other elements before performing a chemical reaction to create electrical energy inside of a contained fuel cell. The electrolysis process is certainly a more environmentally-friendly solution, but there are still great risks with hydrogen energy–it is highly flammable, and its general energy output is less than that of other electricity-generating methods.

Energy Produced from Nuclear Reaction

Finally, energy originating from the splitting of an atom’s nucleus, mostly through nuclear fission, is yet another way to produce energy. A large volume of heat is released when an atom is bombarded by neutrons in a nuclear power plant, which is then converted to electrical energy.

This process also produces a particularly sensitive by-product known as radiation, and with it, radioactive waste. The proper handling of radiation and radioactive waste is of utmost concern, as its effects can be incredibly damaging to the environment surrounding a nuclear power plant.

Nuclear fission produces minimal carbon, so nuclear energy is oft considered environmentally safe–as long as strict protocols are followed to ensure proper storage and disposal of radiation and radioactive waste.

Nuclear to Mechanical to Chemical?

Interestingly enough, the Earth’s heat comes from the decay of radioactive materials in the Earth’s core, loosely linking nuclear power production back to geothermal energy production.

It’s also clear the conversion of energy into electricity is the cleanest option for the environment, yet adequate infrastructure remains limited in supply and accessibility. If not consumed immediately as electricity, energy is thus converted into a chemical form for the convenience of storage and distribution it provides.

Perhaps the expertise and talent of Houstonians serving the flourishing academic and industrial sectors of energy development will soon resolve many of our current energy challenges by exploring further the circular dynamic of the energy environment. Be sure to check out our Events Page to find the networking event that best serves your interest in the Energy Transition.


------

Lindsey Ferrell is a contributing writer to EnergyCapitalHTX and founder of Guerrella & Co.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Local energy innovators recognized at annual Houston Innovation Awards

the big winners

This week, the Houston innovation ecosystem celebrated big wins from the year, and members of the energy transition community were recognized alongside other innovators.

The Houston Innovation Awards honored over 40 finalists across categories, naming the 12 winners and honoring the two Trailblazer Legacy Awards at the event. The event, hosted at TMC Helix Park on November 14 named and celebrated the winners, which included four energy transition innovators.

Here's what energy leaders secured wins during the evening.

Corrolytics is a technology startup founded to solve microbiologically influenced corrosion problems for industrial assets. Co-founder and CEO Anwar Sadek says he's collected over $1 million in dilutive and non-dilutive funding from grants and other opportunities thanks to help from mentors. The company won both the Minority-Founded Business category and the People's Choice: Startup of the Year category.

"As a founder, I am always eager to assist and support fellow entrepreneurs, especially those navigating the unique challenges that come with being a BIPOC founder," he says. "With the guidance of mentors, I learned to master the complexities of the application process for grants and other funding opportunities. In turn, I actively share my experiences with other founders, helping them navigate similar paths."

Founded by CEO Cindy Taff, SageGeosystems is an energy company focused on developing and deploying advanced geothermal technologies to provide reliable power and sustainable energy storage solutions regardless of geography. The company secured the win in the Energy Transition Business category, alongside finalists Amperon, ARIX Technologies, Elementium Materials, InnoVent Renewables, and Tierra Climate.

"Sage Geosystems sets itself apart from competitors with its Geopressured Geothermal Systems, which can be deployed almost anywhere, unlike traditional geothermal technologies that require specific geographic conditions," Taff says. "This flexibility enables Sage to provide a reliable and virtually limitless power supply, making it ideal for energy-intensive applications like data centers."

A finalist in both the Investor of the Year and Ecosystem Builder categories, Juliana Garaizar is the founding partner of Energy Tech Nexus, invests with groups — such as Portfolia, Houston Angel Network, Business Angel Minority Association, and more — locally and beyond.

"I'm a hands on investor," she says. "I offer mentorship and industry and other investor connections. I take advisory roles and board observer seats."

This year, the Houston innovation community suffered the loss of two business leaders who left a significant impact on the ecosystem. Both individuals' careers were recognized with Trailblazer Legacy Awards.

One of the recipients was Scott Gale, executive director of Halliburton Labs, who received the award posthumously. He died on September 24. The award was decided on by the 2024 judges and InnovationMap. Gale was honored alongside Paul Frison, founder of the Houston Technology Center.

“I am immensely proud to honor these two remarkable individuals with the Trailblazer Award this year. It is fitting, as they represent two generations of building Houston’s ecosystem," 2023 Trailblazer Award recipient Brad Burke, managing director of the Rice Alliance and the associate vice president for industry and new ventures within Rice University's Office of Innovation, tells InnovationMap.

"Paul Frison was a pioneering leader who helped establish the Houston Technology Center and fostered the city’s tech ecosystem during the initial technology boom around the year 2000. Scott Gale, through his work at Halliburton Labs over the past five years, has been instrumental in launching Houston’s energy transition ecosystem," he continues. "Both have played pivotal roles in championing technology innovators.”

In honor of his son, Andrew Gale accepted the award with his daughter-in-law, Nicole, during the event.

Pipeline robotics: How this Houston startup is revolutionizing corrosion monitoring

listen now

After working for years in the downstream energy industry where safety and efficiency were top priorities, Dianna Liu thought there was a way technology could make a huge difference.

Despite loving her company and her job, she took a leap of faith to start a robotics company to create technology to more safely and efficiently monitor corrosion in pipelines. ARIX Technologies has developed software and hardware solutions for its customers with pipelines in downstream and beyond.

"Overall, this industry is an industry that really harps on doing things safely, doing things well, and having all the data to make really informed decisions," Liu says on the Houston Innovators Podcast. "Because these are huge companies with huge problems, it takes a lot of time to set up the right systems, adopt new things, and make changes."

But it's an industry Liu knows well, so she founded ARIX in 2017 and created a team of engineers to create the first iteration of the ARIX robot, which was at first made of wood, she says. Now, years later, the much-evolved robot moves up and down the exterior of the pipe, using its technology to scan the interior to evaluate corrosion. The technology works with ARIX's software to provide key data analysis.

With customers across the country and the world, ARIX has a strong foothold in downstream, but has garnered interest from other verticals as well — even working with NASA at one point, Liu says.

"Staying in downstream would be nice and safe for us, but we've been very lucky and have had customers in midstream, upstream, and even outside oil and gas and chemicals," she says. "We've gotten inquiries ranging from cosmetics plants to water or wastewater — essentially anything that's round or a pipe that can corrode, we can help with."

Liu, who goes into detail on the show about how critical establishing a positive company culture has been for ARIX, shares a bit about what it's been like growing her company in Houston.

"Houston being the Energy Capital of the World opens a lot of doors to both customers, investors, and employees in a way that's unparalleled. It is a great place to build a company because of that — you have all this expertise in this city and the surrounding areas that's hard to find elsewhere," she says. "Being such a hub — not only for energy, but in terms transportation — means it's easy for us to get to our customers from around the world."

———

This article originally ran on InnovationMap.