Investors in Houston and across Texas are proving to be transformational partners to finance and grow energy hardware startups. Photo via Getty Images

Texas is a national leader in wind and solar, generating more energy in these categories than any other state since 2006 and double that of next placed California. As investment in renewable energy continues to skyrocket, the limitations of the 19th-century grid prevent the industry from realizing the benefits of this 21st-century technology.

For years, Texas has grappled with insufficient infrastructure for its current mix of energy sources, which includes surging renewables. The Alternating Current (AC) grid — the standard since the 1800s — requires matching supply and demand in real-time to maintain a stable frequency, which is complex and costly, especially with renewable energy when the sun doesn’t always shine and the wind doesn’t always blow.

Startup firms are busy developing technologies to solve this issue. For example, it’s possible to modernize the AC grid to control the voltage of the distribution network precisely, to ensure fast adjustments to demand, and to adapt to changes in supply from renewables. Enoda, a U.K.-based scale-up, is an example of an innovative company developing and delivering technology to enable the AC grid to accommodate much higher levels of renewable energy and electrification.

Equally important to these technical innovations are innovations in financing for energy startups. On two levels, investors in Houston and across Texas are proving to be transformational partners to finance and grow energy hardware startups.

1. Innovative Funding Structures

Because of the long timelines, hardware investing requires, in part, more patient capital than the typical Silicon Valley venture capital model prevalent in startup investments. Their playbook is best suited for software companies that develop new features in weeks or months. Energy hardware startups require a longer timeline because of the far greater complexity and upfront capital outlay.

Texas investment firms and family offices are, however, accustomed to investing in complex energy projects with longer development timelines. This complexity presents a high barrier to entry for competitors, which significantly increases the upside potential that risk-capital investors seek should the innovation find market traction. At the same time, up-front capital requirements have decreased considerably, making hardware more appealing to investors.

2. Visionary partnership

Attracting investors and demonstrating early-stage traction differs for hardware companies because of the lengthy pre-revenue R&D process. Software innovators can launch with a minimum viable product, gain a few early customers, and then grow incrementally. By contrast, energy hardware technology must be fully developed from launch. Each Enoda PRIME exchanger, from the first unit sold, represents a piece of critical infrastructure on which households will rely for their electricity supply for its 30-year lifespan. For venture investors who focus on software, it’s easy to assess the health of a software company based on well-established metrics related to customer growth and the cost of customer acquisition.

Hardware investing requires investors to have a much deeper understanding of the problem being solved and assess the quality of the solution objectively rather than rely on early customers for a minimum viable product. Texas investors have been quick to understand the problems that the energy industry must solve around energy balancing and keeping the frequency of a system stable in order to grow renewable energy. Why the keen insight? Because that problem is being solved today by gas power plants. A visionary investor with many years of deep industry perspective is far more likely to appreciate that than a VC firm looking across many industries based on a standard set of metrics.

Visionary partnership is precisely what energy startups need because it’s important not to evaluate the company as it is today but what it will be in five years. Hardware startups need visionary investor partners who understand the importance of parallel pathing fundamental innovation, product development and delivery, and customer development to grow and succeed. Hardware startups succeed only when they can do these things simultaneously—and require investors who can imagine a possible future and understand the path to reach it.

Changing the way investment works

Many energy startups are worthy inheritors of Houston’s bold entrepreneurial spirit that led to technological innovations like deep-sea drilling and hydraulic fracturing. They will continue to need equally bold investors who recognize the world of opportunities at their doorstep.

———

Paul Domjan is the founder and chief policy and global affairs officer at Enoda. Derek Jones and Paul Morico are partners at Baker Botts.

Texas gets a gold star when it comes to projected wind power capacity. Photo via Getty Images

Texas ranks among the leading states for projected wind power capacity

We're No. 1

A new report ranks Texas in the top three states that are blowing away nationwide wind power capacity projections.

Texas, Wyoming, and Iowa are standing out in terms of wind power capacity, according to a report from Texas Real Estate Source, a Texas real estate, travel, and lifestyle website, that analyzed all 50 states and ranked them by total projected capacity, capacity per capita, and capacity per square mile.

Nationwide wind power capacity is projected to grow exponentially in the coming years, with Texas, Wyoming, and Iowa leading the charge. With 44,974 megawatts of projected wind power capacity, Texas leads the country in terms of volume. Wyoming, meanwhile, leads the nation in projected wind power capacity per capita with 6,679 MW serving a population of 581,381, and Iowa takes first place in projected wind power capacity per square mile.

"As renewable energy continues to command center-stage attention and massive financial investment, wind power has proven to be an indispensable tool in the clean energy toolbox," reads the report.

In its top spot, Texas' projected wind power capacity is more than triple the capacity of second place, Oklahoma, but the Lone Star State falls to ninth place in the ranking of capacity per capita with 1.5 kilowatts.

“It’s no surprise to see Texas significantly outpacing the nation in installed and projected wind power capacity," says a spokesperson from Texas Real Estate Source. "The combination of boundless land, favorable wind patterns, and highly-respected research institutions has made it the perfect place for wind power adoption. It’s revealing, however, to see the per capita and per square mile rankings: they give us a more complete picture of which states are at the forefront of wind power development.”

A few other states to take note of in the report are California and Arkansas. California ranks No. 7 when it comes to total projected wind power capacity but only is No. 24 in the per capita ranking. And, considering the state has only 104 MW currently under construction, California doesn't seem to be keeping up with its population.

Arkansas, meanwhile, has 180 MW currently under construction — previously having a projected zero MW of wind power capacity. Once this is done, Arkansas will outperform 17 other states.

When it comes to wind power jobs, the Lone Star State is making some moves on that front too, according to another report. The SmartAsset study found that 2.23 percent of workers in the Houston area hold down jobs classified as “green.” Per the Department of Energy, Texas tallied almost 25,500 wind energy jobs in 2021.

Energy sources are often categorized as renewable or not, but perhaps a more accurate classification focuses on the type of reaction that converts energy into useful matter. Photo by simpson33/Getty Images

How is energy produced?

ENERGY 101

Many think of the Energy Industry as a dichotomy–old vs. new, renewable vs. nonrenewable, good vs. bad. But like most things, energy comes from an array of sources, and each kind has its own unique benefits and challenges. Understanding the multi-faceted identity of currently available energy sources creates an environment in which new ideas for cleaner and more sustainable energy sourcing can proliferate.

At a high level, energy can be broadly categorized by the process of extracting and converting it into a useful form.

Energy Produced from Chemical Reaction

Energy derived from coal, crude oil, natural gas, and biomass is primarily produced as a result of bonds breaking during a chemical reaction. When heated, burned, or fermented, organic matter releases energy, which is converted into mechanical or electrical energy.

These sources can be stored, distributed, and shared relatively easily and do not have to be converted immediately for power consumption. However, the resulting chemical reaction produces environmentally harmful waste products.

Though the processes to extract these organic sources of energy have been refined for many years to achieve reliable and cheap energy, they can be risky and are perceived as invasive to mother nature.

According to the 2022 bp Statistical Review of World Energy, approximately 50% of the world’s energy consumption comes from petroleum and natural gas; another 25% from coal. Though there was a small decline in demand for oil from 2019 to 2021, the overall demand for fossil fuels remained unchanged during the same time frame, mostly due to the increase in natural gas and coal consumption.

Energy Produced from Mechanical Reaction

Energy captured from the earth’s heat or the movement of wind and water results from the mechanical processes enabled by the turning of turbines in source-rich environments. These turbines spin to produce electricity inside a generator.

Solar energy does not require the use of a generator but produces electricity due to the release of electrons from the semiconducting materials found on a solar panel. The electricity produced by geothermal, wind, solar, and hydropower is then converted from direct current to alternating current electricity.

Electricity is most useful for immediate consumption, as storage requires the use of batteries–a process that turns electrical energy into chemical energy that can then be accessed in much the same way that coal, crude oil, natural gas, and biomass produce energy.

Energy Produced from a Combination of Reactions

Hydrogen energy comes from a unique blend of both electrical and chemical energy processes. Despite hydrogen being the most abundant element on earth, it is rarely found on its own, requiring a two-step process to extract and convert energy into a usable form. Hydrogen is primarily produced as a by-product of fossil fuels, with its own set of emissions challenges related to separating the hydrogen from the hydrocarbons.

Many use electrolysis to separate hydrogen from other elements before performing a chemical reaction to create electrical energy inside of a contained fuel cell. The electrolysis process is certainly a more environmentally-friendly solution, but there are still great risks with hydrogen energy–it is highly flammable, and its general energy output is less than that of other electricity-generating methods.

Energy Produced from Nuclear Reaction

Finally, energy originating from the splitting of an atom’s nucleus, mostly through nuclear fission, is yet another way to produce energy. A large volume of heat is released when an atom is bombarded by neutrons in a nuclear power plant, which is then converted to electrical energy.

This process also produces a particularly sensitive by-product known as radiation, and with it, radioactive waste. The proper handling of radiation and radioactive waste is of utmost concern, as its effects can be incredibly damaging to the environment surrounding a nuclear power plant.

Nuclear fission produces minimal carbon, so nuclear energy is oft considered environmentally safe–as long as strict protocols are followed to ensure proper storage and disposal of radiation and radioactive waste.

Nuclear to Mechanical to Chemical?

Interestingly enough, the Earth’s heat comes from the decay of radioactive materials in the Earth’s core, loosely linking nuclear power production back to geothermal energy production.

It’s also clear the conversion of energy into electricity is the cleanest option for the environment, yet adequate infrastructure remains limited in supply and accessibility. If not consumed immediately as electricity, energy is thus converted into a chemical form for the convenience of storage and distribution it provides.

Perhaps the expertise and talent of Houstonians serving the flourishing academic and industrial sectors of energy development will soon resolve many of our current energy challenges by exploring further the circular dynamic of the energy environment. Be sure to check out our Events Page to find the networking event that best serves your interest in the Energy Transition.


------

Lindsey Ferrell is a contributing writer to EnergyCapitalHTX and founder of Guerrella & Co.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston companies win big at Elon Musk-backed carbon removal competition

xprize winners

Houston-based Mati Carbon has won the $50 million grand prize in the XPRIZE Carbon Removal competition, backed by Elon Musk’s charitable organization, The Musk Foundation.

Mati was selected in 2024 as one of 20 global finalists. The company removes carbon through its Enhanced Rock Weathering (ERW) program that works with agricultural farms in Africa and India.

The 3-year-old startup accelerates the natural process of rock weathering (ERW) by applying pulverized basalt to croplands of partnered smallholder farmers, free of charge. Mati says the farmers it partners with are some of the most vulnerable to the impacts of climate change.

“Winning this XPRIZE competition is an incredible honor and a definitive validation of our research and development, and building out the infrastructure needed to impact millions of farmers while delivering verifiable carbon dioxide removal at a gigaton scale,” Mati Carbon Founder and CEO Shantanu Agarwal, said in a news release. “I couldn’t be prouder, not just of the Mati team, but of our collaborators, research partners and the thousands of smallholder farmers who let us be part of their lives. This XPRIZE recognition will allow us to collaborate with local partners to accelerate the use of enhanced rock weathering across the Global South.”

Mati reports that it plans to use the award to “scale its efforts working with smallholder farmers worldwide.” Apart from the XPRIZE funding, Mati plans to grow its model through the sale of CDR credits. According to the company, it counts Shopify, Stripe, and H&M among its early carbon credit buyers.

“Mati Carbon’s deployments bolster farmers’ livelihoods through improved soil health, reduced agricultural inputs, and increased income at zero cost to them. Mati Carbon’s team has developed a scientifically rigorous approach to monitoring and verification, and excelled across each of XPRIZE’s prize evaluation criteria – operational, sustainability, and cost metrics – giving the XPRIZE judges the highest confidence in Mati Carbon’s solution’s long-term scalability,” the XPRIZE judges wrote.

Houston-based Vaulted Deep took home the second-runner-up prize in the competition and $8 million for its organic waste storage process. The company provides permanent carbon storage by injecting nonhazardous organic waste deep underground. It spun off with $8 million in seed funding from Advantek Waste Management Services in 2023.

"Our approach is grounded in geomechanical injection techniques that have been safely deployed globally for decades by our team and predecessors," Omar Abou-Sayed, co-founder and executive chairman of Vaulted, said in a separate release. "XPRIZE recognized that this is a proven approach—already in use, delivering impact, and built on the kind of reliability the industry needs to scale responsibly."

Launched in 2021, the four-year XPRIZE Carbon Removal competition challenged global innovators to deploy scalable solutions for removing carbon dioxide from the atmosphere and oceans. More than 1,300 teams from 88 countries competed. XPRIZE finalists were required to remove at least 1,000 tonnes of CO2 over a one-year demonstration period.

French company NetZero took home the first-runner-up prize of $15 million, and London-based UNDO came in as third-runner-up with a $5 million prize.

Since the announcement of the XPRIZE Carbon Removal competition, the Musk-led Department of Government Efficiency has cut climate funding for agencies, projects and research. While the Musk Foundation sponsored the XPRIZE event, it is not affiliated with the California-based organization, according to the Associated Press.

Houston Energy Transition Initiative announces new members for 2025

The view from heti

The Greater Houston Partnership’s Houston Energy Transition Initiative (HETI) has welcomed three new member companies who aim to accelerate global solutions for an energy-abundant, low-carbon future.

HETI members are champions in their fields, each with their distinctive advantage to help region lead the energy transition with innovative solutions. New members include:

Kanin Energy

A purpose-built, turnkey developer that focuses on transforming industrial waste heat into emission-free power, providing bundled solutions to industrial facilities that include the design, construction, operation, and financing of waste heat to power and other decarbonization projects.

TerraPower

A developer of advanced technologies that deliver safe, affordable, and abundant carbon-free energy. Their work supports industrial decarbonization and economic growth by harnessing heat and electricity in innovative ways. Additionally, they are advancing processes to extract radioisotopes for use in lifesaving cancer treatments.

TotalEnergies

A global integrated energy company that produces and markets energies: oil and biofuels, natural gas, biogas and low-carbon hydrogen, renewables and electricity. Our more than 100,000 employees are committed to provide as many people as possible with energy that is more reliable, more affordable and more sustainable. Active in about 120 countries, TotalEnergies places sustainability at the heart of its strategy, its projects and its operations.

———

This article originally appeared on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Houston renewables developer lands $85M for nationwide solar projects

fresh funding

Houston-based Catalyze, a developer of independent power systems, announced it has secured an $85 million tax equity investment from RBC Community Investments.

“RBC’s investment in this portfolio demonstrates our commitment to advancing clean energy solutions within local communities,” Jonathan Cheng, managing director at RBC, said in a news release. “We are excited to partner with Catalyze on the strategic deployment of these and future projects.”

The financing will go toward the construction and completion of 75 megawatts of commercial and industrial solar projects nationwide in 2025. Catalyze’s current generation portfolio now totals 300 megawatts of projects in operations and construction.

The transaction will help Catalyze’s existing relationship with RBC, which demonstrates a commitment to advancing renewable energy solutions at scale.

“RBC is a valued financing partner, and we are pleased to further expand our relationship with this latest investment,” Jared Haines, CEO of Catalyze, said in a news release. “This financing enables us to further our mission to bring scalable distributed generation projects to businesses and communities nationwide.”

Catalyze also has other private equity sponsors in EnCap Investments and Actis.

Last May, Catalyze announced that it secured $100 million in financing from NY Green Bank to support a 79-megawatt portfolio of community distributed generation solar projects across New York state.