Investors in Houston and across Texas are proving to be transformational partners to finance and grow energy hardware startups. Photo via Getty Images

Texas is a national leader in wind and solar, generating more energy in these categories than any other state since 2006 and double that of next placed California. As investment in renewable energy continues to skyrocket, the limitations of the 19th-century grid prevent the industry from realizing the benefits of this 21st-century technology.

For years, Texas has grappled with insufficient infrastructure for its current mix of energy sources, which includes surging renewables. The Alternating Current (AC) grid — the standard since the 1800s — requires matching supply and demand in real-time to maintain a stable frequency, which is complex and costly, especially with renewable energy when the sun doesn’t always shine and the wind doesn’t always blow.

Startup firms are busy developing technologies to solve this issue. For example, it’s possible to modernize the AC grid to control the voltage of the distribution network precisely, to ensure fast adjustments to demand, and to adapt to changes in supply from renewables. Enoda, a U.K.-based scale-up, is an example of an innovative company developing and delivering technology to enable the AC grid to accommodate much higher levels of renewable energy and electrification.

Equally important to these technical innovations are innovations in financing for energy startups. On two levels, investors in Houston and across Texas are proving to be transformational partners to finance and grow energy hardware startups.

1. Innovative Funding Structures

Because of the long timelines, hardware investing requires, in part, more patient capital than the typical Silicon Valley venture capital model prevalent in startup investments. Their playbook is best suited for software companies that develop new features in weeks or months. Energy hardware startups require a longer timeline because of the far greater complexity and upfront capital outlay.

Texas investment firms and family offices are, however, accustomed to investing in complex energy projects with longer development timelines. This complexity presents a high barrier to entry for competitors, which significantly increases the upside potential that risk-capital investors seek should the innovation find market traction. At the same time, up-front capital requirements have decreased considerably, making hardware more appealing to investors.

2. Visionary partnership

Attracting investors and demonstrating early-stage traction differs for hardware companies because of the lengthy pre-revenue R&D process. Software innovators can launch with a minimum viable product, gain a few early customers, and then grow incrementally. By contrast, energy hardware technology must be fully developed from launch. Each Enoda PRIME exchanger, from the first unit sold, represents a piece of critical infrastructure on which households will rely for their electricity supply for its 30-year lifespan. For venture investors who focus on software, it’s easy to assess the health of a software company based on well-established metrics related to customer growth and the cost of customer acquisition.

Hardware investing requires investors to have a much deeper understanding of the problem being solved and assess the quality of the solution objectively rather than rely on early customers for a minimum viable product. Texas investors have been quick to understand the problems that the energy industry must solve around energy balancing and keeping the frequency of a system stable in order to grow renewable energy. Why the keen insight? Because that problem is being solved today by gas power plants. A visionary investor with many years of deep industry perspective is far more likely to appreciate that than a VC firm looking across many industries based on a standard set of metrics.

Visionary partnership is precisely what energy startups need because it’s important not to evaluate the company as it is today but what it will be in five years. Hardware startups need visionary investor partners who understand the importance of parallel pathing fundamental innovation, product development and delivery, and customer development to grow and succeed. Hardware startups succeed only when they can do these things simultaneously—and require investors who can imagine a possible future and understand the path to reach it.

Changing the way investment works

Many energy startups are worthy inheritors of Houston’s bold entrepreneurial spirit that led to technological innovations like deep-sea drilling and hydraulic fracturing. They will continue to need equally bold investors who recognize the world of opportunities at their doorstep.

———

Paul Domjan is the founder and chief policy and global affairs officer at Enoda. Derek Jones and Paul Morico are partners at Baker Botts.

Texas gets a gold star when it comes to projected wind power capacity. Photo via Getty Images

Texas ranks among the leading states for projected wind power capacity

We're No. 1

A new report ranks Texas in the top three states that are blowing away nationwide wind power capacity projections.

Texas, Wyoming, and Iowa are standing out in terms of wind power capacity, according to a report from Texas Real Estate Source, a Texas real estate, travel, and lifestyle website, that analyzed all 50 states and ranked them by total projected capacity, capacity per capita, and capacity per square mile.

Nationwide wind power capacity is projected to grow exponentially in the coming years, with Texas, Wyoming, and Iowa leading the charge. With 44,974 megawatts of projected wind power capacity, Texas leads the country in terms of volume. Wyoming, meanwhile, leads the nation in projected wind power capacity per capita with 6,679 MW serving a population of 581,381, and Iowa takes first place in projected wind power capacity per square mile.

"As renewable energy continues to command center-stage attention and massive financial investment, wind power has proven to be an indispensable tool in the clean energy toolbox," reads the report.

In its top spot, Texas' projected wind power capacity is more than triple the capacity of second place, Oklahoma, but the Lone Star State falls to ninth place in the ranking of capacity per capita with 1.5 kilowatts.

“It’s no surprise to see Texas significantly outpacing the nation in installed and projected wind power capacity," says a spokesperson from Texas Real Estate Source. "The combination of boundless land, favorable wind patterns, and highly-respected research institutions has made it the perfect place for wind power adoption. It’s revealing, however, to see the per capita and per square mile rankings: they give us a more complete picture of which states are at the forefront of wind power development.”

A few other states to take note of in the report are California and Arkansas. California ranks No. 7 when it comes to total projected wind power capacity but only is No. 24 in the per capita ranking. And, considering the state has only 104 MW currently under construction, California doesn't seem to be keeping up with its population.

Arkansas, meanwhile, has 180 MW currently under construction — previously having a projected zero MW of wind power capacity. Once this is done, Arkansas will outperform 17 other states.

When it comes to wind power jobs, the Lone Star State is making some moves on that front too, according to another report. The SmartAsset study found that 2.23 percent of workers in the Houston area hold down jobs classified as “green.” Per the Department of Energy, Texas tallied almost 25,500 wind energy jobs in 2021.

Energy sources are often categorized as renewable or not, but perhaps a more accurate classification focuses on the type of reaction that converts energy into useful matter. Photo by simpson33/Getty Images

How is energy produced?

ENERGY 101

Many think of the Energy Industry as a dichotomy–old vs. new, renewable vs. nonrenewable, good vs. bad. But like most things, energy comes from an array of sources, and each kind has its own unique benefits and challenges. Understanding the multi-faceted identity of currently available energy sources creates an environment in which new ideas for cleaner and more sustainable energy sourcing can proliferate.

At a high level, energy can be broadly categorized by the process of extracting and converting it into a useful form.

Energy Produced from Chemical Reaction

Energy derived from coal, crude oil, natural gas, and biomass is primarily produced as a result of bonds breaking during a chemical reaction. When heated, burned, or fermented, organic matter releases energy, which is converted into mechanical or electrical energy.

These sources can be stored, distributed, and shared relatively easily and do not have to be converted immediately for power consumption. However, the resulting chemical reaction produces environmentally harmful waste products.

Though the processes to extract these organic sources of energy have been refined for many years to achieve reliable and cheap energy, they can be risky and are perceived as invasive to mother nature.

According to the 2022 bp Statistical Review of World Energy, approximately 50% of the world’s energy consumption comes from petroleum and natural gas; another 25% from coal. Though there was a small decline in demand for oil from 2019 to 2021, the overall demand for fossil fuels remained unchanged during the same time frame, mostly due to the increase in natural gas and coal consumption.

Energy Produced from Mechanical Reaction

Energy captured from the earth’s heat or the movement of wind and water results from the mechanical processes enabled by the turning of turbines in source-rich environments. These turbines spin to produce electricity inside a generator.

Solar energy does not require the use of a generator but produces electricity due to the release of electrons from the semiconducting materials found on a solar panel. The electricity produced by geothermal, wind, solar, and hydropower is then converted from direct current to alternating current electricity.

Electricity is most useful for immediate consumption, as storage requires the use of batteries–a process that turns electrical energy into chemical energy that can then be accessed in much the same way that coal, crude oil, natural gas, and biomass produce energy.

Energy Produced from a Combination of Reactions

Hydrogen energy comes from a unique blend of both electrical and chemical energy processes. Despite hydrogen being the most abundant element on earth, it is rarely found on its own, requiring a two-step process to extract and convert energy into a usable form. Hydrogen is primarily produced as a by-product of fossil fuels, with its own set of emissions challenges related to separating the hydrogen from the hydrocarbons.

Many use electrolysis to separate hydrogen from other elements before performing a chemical reaction to create electrical energy inside of a contained fuel cell. The electrolysis process is certainly a more environmentally-friendly solution, but there are still great risks with hydrogen energy–it is highly flammable, and its general energy output is less than that of other electricity-generating methods.

Energy Produced from Nuclear Reaction

Finally, energy originating from the splitting of an atom’s nucleus, mostly through nuclear fission, is yet another way to produce energy. A large volume of heat is released when an atom is bombarded by neutrons in a nuclear power plant, which is then converted to electrical energy.

This process also produces a particularly sensitive by-product known as radiation, and with it, radioactive waste. The proper handling of radiation and radioactive waste is of utmost concern, as its effects can be incredibly damaging to the environment surrounding a nuclear power plant.

Nuclear fission produces minimal carbon, so nuclear energy is oft considered environmentally safe–as long as strict protocols are followed to ensure proper storage and disposal of radiation and radioactive waste.

Nuclear to Mechanical to Chemical?

Interestingly enough, the Earth’s heat comes from the decay of radioactive materials in the Earth’s core, loosely linking nuclear power production back to geothermal energy production.

It’s also clear the conversion of energy into electricity is the cleanest option for the environment, yet adequate infrastructure remains limited in supply and accessibility. If not consumed immediately as electricity, energy is thus converted into a chemical form for the convenience of storage and distribution it provides.

Perhaps the expertise and talent of Houstonians serving the flourishing academic and industrial sectors of energy development will soon resolve many of our current energy challenges by exploring further the circular dynamic of the energy environment. Be sure to check out our Events Page to find the networking event that best serves your interest in the Energy Transition.


------

Lindsey Ferrell is a contributing writer to EnergyCapitalHTX and founder of Guerrella & Co.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas among top states for EV charging access, report shows

by the numbers

A new study from FinanceBuzz reports that Texas has the fifth most public electric vehicle charging stations among states in the U.S.

In its Electric Vehicle (EV) Statistics [2025]: Trends in Sales, Savings, and More report, FinanceBuzz, a personal finance and investment adviser, compiled electric vehicle data to find sales trends, adoption rates, charging infrastructure, costs, savings and more.

Texas has a total of 3,709 public EV charging stations, which equals about 16 stations per 1,000 EVs, according to the report. The remaining top five included:

  • No. 1 California with 17,122 EV charging stations
  • No. 2 New York with 4,814 EV charging stations
  • No.3 Massachusetts with 3,738 EV charging stations
  • No. 4 Florida with 3,715 EV charging stations

Los Angeles had the most public charging stations at 1,609 among U.S. cities. Austin was Texas’s top city with 656 stations.

The study also looked at how much Americans are spending on transportation, and found that the average American using a gas vehicle spends $1,865 annually on fuel. FinanceBuzz found that electric vehicle owners would pay 65 percent less on energy costs. Calculations were based on driving 14,489 miles annually, which measures to 37.9 miles per day. The full report sourced data from the International Energy Agency, the U.S. Department of Energy, the U.S. Department of Transportation, AAA, the U.S. Energy Information Administration and other organizations.

The report said Americans purchased over 1.5 million EVs in 2024, which equals approximately 10 percent of all new light-duty vehicles sold, citing information from the International Council on Clean Transportation.

While Tesla remains the most popular make, 24 new EV models were launched in 2024 by other companies, which represents a 15 percent increase from the previous year.

Other trends in the report included:

  • The U.S. now has more than 64,000 public charging stations and over 168,000 charging ports, which is up from fewer than 1,000 stations in 2010.
  • An average EV owner will spend about $654 per year on electricity, compared to $1,865 for a gas-powered vehicle. The savings equate to about $1,211 per year.
  • In 2024, U.S. EV sales surpassed 1.5 million, but the pace slowed compared to the previous year, with a 10 percent increase versus 40 percent in 2023.
  • Insuring an EV can be more costly because parts are harder to come by, making repairs and replacements more expensive.
  • In the second quarter of 2024, nearly half of new EVs were leased, which is a 28 percentage point increase since 2021.

CenterPoint Energy names new COO as resiliency initiatives continue

new hire

CenterPoint Energy has named Jesus Soto Jr. as its new executive vice president and chief operating officer.

An energy industry veteran with deep ties to Texas, Soto will oversee the company's electric operations, gas operations, safety, supply chain, and customer care functions. The company says Soto will also focus on improving reliability and meeting the increased energy needs in the states CenterPoint serves.

"We are pleased to be able to welcome a leader of Jesus Soto's caliber to CenterPoint's executive team,” Jason Wells, CEO and president of CenterPoint, said in a news release. “We have one of the most dynamic growth stories in the industry, and over the next five years we will deliver over $31 billion of investments across our footprint as part of our capital plan. Jesus's deep understanding and background are the perfect match to help us deliver this incredible scope of work at-pace that will foster the economic development and growth demands in our key markets. He will also be instrumental in helping us continue to focus on improving safety and delivering better reliability for all the communities we are fortunate to serve.”

Soto comes to CenterPoint with over 30 years of experience in leading large teams and executing large scale capital projects. As a longtime Houstonian, he served in roles as executive vice president of Quanta Services and COO for Mears Group Inc. He also served in senior leadership roles at other utility and energy companies, including PG&E Corporation in Northern California and El Paso Corp. in Houston.

Soto has a bachelor's degree in civil engineering from the University of Texas at El Paso, and a master's degree in civil engineering from Texas A&M University. He has a second master's degree in business administration from the University of Phoenix.

“I'm excited to join CenterPoint's high-performing team,” Soto said in the news release. “It's a true privilege to be able to serve our 7 million customers in Texas, Indiana, Ohio and Minnesota. We have an incredible amount of capital work ahead of us to help meet the growing energy needs of our customers and communities, especially across Texas.”

Soto will join the company on Aug. 11 and report to Wells as CenterPoint continues on its Greater Houston Resiliency Initiative and Systemwide Resiliency Plan.

“To help realize our resiliency and growth goals, I look forward to helping our teams deliver this work safely while helping our customers experience better outcomes,” Soto added in the news release. “They expect, and deserve, no less.”

Oil markets on edge: Geopolitics, supply risks, and what comes next

guest column

Oil prices are once again riding the waves of geopolitics. Uncertainty remains a key factor shaping global energy trends.

As of June 25, 2025, U.S. gas prices were averaging around $3.22 per gallon, well below last summer’s levels and certainly not near any recent high. Meanwhile, Brent crude is trading near $68 per barrel, though analysts warn that renewed escalation especially involving Iran and the Strait of Hormuz could push prices above $90 or even $100. Trump’s recent comments that China may continue purchasing Iranian oil add yet another layer of geopolitical complexity.

So how should we think about the state of the oil market and what lies ahead over the next year?

That question was explored on the latest episode of The Energy Forum with experts Skip York and Abhi Rajendran, who both bring deep experience in analyzing global oil dynamics.

“About 20% of the world’s oil and LNG flows through the Strait of Hormuz,” said Skip. “When conflict looms, even the perception of disruption can move the market $5 a barrel or more.”

This is exactly what we saw recently: a market reacting not just to actual supply and demand, but to perceived risk. And that risk is compounding existing challenges, where global demand remains steady, but supply has been slow to respond.

Abhi noted that U.S. shale production has been flat so far this year, and that given the market’s volatility, it’s becoming harder to stay short on oil. In his view, a higher price floor may be taking hold, with longer-lasting upward pressure likely if current dynamics continue.

Meanwhile, OPEC+ is signaling supply increases, but actual delivery has underwhelmed. Add in record-breaking summer heat in the Middle East, pulling up seasonal demand, and it’s easy to see why both experts foresee a return to the $70–$80 range, even without a major shock.

Longer-term, structural changes in China’s energy mix are starting to reshape demand patterns globally. Diesel and gasoline may have peaked, while petrochemical feedstock growth continues.

Skip noted that China has chosen to expand mobility through “electrons, not molecules,” a reference to electric vehicles over conventional fuels. He pointed out that EVs now account for over 50% of monthly vehicle sales, a signal of a longer-term shift in China’s energy demand.

But geopolitical context matters as much as market math. In his recent policy brief, Jim Krane points out that Trump’s potential return to a “maximum pressure” campaign on Iran is no longer guaranteed strong support from Gulf allies.

Jim points out that Saudi and Emirati leaders are taking a more cautious approach this time, worried that another clash with Iran could deter investors and disrupt progress on Vision 2030. Past attacks and regional instability continue to shape their more restrained approach.

And Iran, for its part, has evolved. The “dark fleet” of sanctions-evasion tankers has expanded, and exports are booming up to 2 million barrels per day, mostly to China. Disruption won’t be as simple as targeting a single export terminal anymore, with infrastructure like the Jask terminal outside the Strait of Hormuz.

Where do we go from here?

Skip suggests we may see prices drift upward through 2026 as OPEC+ runs out of spare capacity and U.S. shale declines. Abhi is even more bullish, seeing potential for a quicker climb if demand strengthens and supply falters.

We’re entering a phase where geopolitical missteps, whether in Tehran, Beijing, or Washington, can have outsized impacts. Market fundamentals matter, but political risk is the wildcard that could rewrite the price deck overnight.

As these dynamics continue to evolve, one thing is clear: energy policy, diplomacy, and investment strategy must be strategically coordinated to manage risk and maintain market stability. The stakes for global markets are simply too high for misalignment.

------------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.