Investors in Houston and across Texas are proving to be transformational partners to finance and grow energy hardware startups. Photo via Getty Images

Texas is a national leader in wind and solar, generating more energy in these categories than any other state since 2006 and double that of next placed California. As investment in renewable energy continues to skyrocket, the limitations of the 19th-century grid prevent the industry from realizing the benefits of this 21st-century technology.

For years, Texas has grappled with insufficient infrastructure for its current mix of energy sources, which includes surging renewables. The Alternating Current (AC) grid — the standard since the 1800s — requires matching supply and demand in real-time to maintain a stable frequency, which is complex and costly, especially with renewable energy when the sun doesn’t always shine and the wind doesn’t always blow.

Startup firms are busy developing technologies to solve this issue. For example, it’s possible to modernize the AC grid to control the voltage of the distribution network precisely, to ensure fast adjustments to demand, and to adapt to changes in supply from renewables. Enoda, a U.K.-based scale-up, is an example of an innovative company developing and delivering technology to enable the AC grid to accommodate much higher levels of renewable energy and electrification.

Equally important to these technical innovations are innovations in financing for energy startups. On two levels, investors in Houston and across Texas are proving to be transformational partners to finance and grow energy hardware startups.

1. Innovative Funding Structures

Because of the long timelines, hardware investing requires, in part, more patient capital than the typical Silicon Valley venture capital model prevalent in startup investments. Their playbook is best suited for software companies that develop new features in weeks or months. Energy hardware startups require a longer timeline because of the far greater complexity and upfront capital outlay.

Texas investment firms and family offices are, however, accustomed to investing in complex energy projects with longer development timelines. This complexity presents a high barrier to entry for competitors, which significantly increases the upside potential that risk-capital investors seek should the innovation find market traction. At the same time, up-front capital requirements have decreased considerably, making hardware more appealing to investors.

2. Visionary partnership

Attracting investors and demonstrating early-stage traction differs for hardware companies because of the lengthy pre-revenue R&D process. Software innovators can launch with a minimum viable product, gain a few early customers, and then grow incrementally. By contrast, energy hardware technology must be fully developed from launch. Each Enoda PRIME exchanger, from the first unit sold, represents a piece of critical infrastructure on which households will rely for their electricity supply for its 30-year lifespan. For venture investors who focus on software, it’s easy to assess the health of a software company based on well-established metrics related to customer growth and the cost of customer acquisition.

Hardware investing requires investors to have a much deeper understanding of the problem being solved and assess the quality of the solution objectively rather than rely on early customers for a minimum viable product. Texas investors have been quick to understand the problems that the energy industry must solve around energy balancing and keeping the frequency of a system stable in order to grow renewable energy. Why the keen insight? Because that problem is being solved today by gas power plants. A visionary investor with many years of deep industry perspective is far more likely to appreciate that than a VC firm looking across many industries based on a standard set of metrics.

Visionary partnership is precisely what energy startups need because it’s important not to evaluate the company as it is today but what it will be in five years. Hardware startups need visionary investor partners who understand the importance of parallel pathing fundamental innovation, product development and delivery, and customer development to grow and succeed. Hardware startups succeed only when they can do these things simultaneously—and require investors who can imagine a possible future and understand the path to reach it.

Changing the way investment works

Many energy startups are worthy inheritors of Houston’s bold entrepreneurial spirit that led to technological innovations like deep-sea drilling and hydraulic fracturing. They will continue to need equally bold investors who recognize the world of opportunities at their doorstep.

———

Paul Domjan is the founder and chief policy and global affairs officer at Enoda. Derek Jones and Paul Morico are partners at Baker Botts.

Texas gets a gold star when it comes to projected wind power capacity. Photo via Getty Images

Texas ranks among the leading states for projected wind power capacity

We're No. 1

A new report ranks Texas in the top three states that are blowing away nationwide wind power capacity projections.

Texas, Wyoming, and Iowa are standing out in terms of wind power capacity, according to a report from Texas Real Estate Source, a Texas real estate, travel, and lifestyle website, that analyzed all 50 states and ranked them by total projected capacity, capacity per capita, and capacity per square mile.

Nationwide wind power capacity is projected to grow exponentially in the coming years, with Texas, Wyoming, and Iowa leading the charge. With 44,974 megawatts of projected wind power capacity, Texas leads the country in terms of volume. Wyoming, meanwhile, leads the nation in projected wind power capacity per capita with 6,679 MW serving a population of 581,381, and Iowa takes first place in projected wind power capacity per square mile.

"As renewable energy continues to command center-stage attention and massive financial investment, wind power has proven to be an indispensable tool in the clean energy toolbox," reads the report.

In its top spot, Texas' projected wind power capacity is more than triple the capacity of second place, Oklahoma, but the Lone Star State falls to ninth place in the ranking of capacity per capita with 1.5 kilowatts.

“It’s no surprise to see Texas significantly outpacing the nation in installed and projected wind power capacity," says a spokesperson from Texas Real Estate Source. "The combination of boundless land, favorable wind patterns, and highly-respected research institutions has made it the perfect place for wind power adoption. It’s revealing, however, to see the per capita and per square mile rankings: they give us a more complete picture of which states are at the forefront of wind power development.”

A few other states to take note of in the report are California and Arkansas. California ranks No. 7 when it comes to total projected wind power capacity but only is No. 24 in the per capita ranking. And, considering the state has only 104 MW currently under construction, California doesn't seem to be keeping up with its population.

Arkansas, meanwhile, has 180 MW currently under construction — previously having a projected zero MW of wind power capacity. Once this is done, Arkansas will outperform 17 other states.

When it comes to wind power jobs, the Lone Star State is making some moves on that front too, according to another report. The SmartAsset study found that 2.23 percent of workers in the Houston area hold down jobs classified as “green.” Per the Department of Energy, Texas tallied almost 25,500 wind energy jobs in 2021.

Energy sources are often categorized as renewable or not, but perhaps a more accurate classification focuses on the type of reaction that converts energy into useful matter. Photo by simpson33/Getty Images

How is energy produced?

ENERGY 101

Many think of the Energy Industry as a dichotomy–old vs. new, renewable vs. nonrenewable, good vs. bad. But like most things, energy comes from an array of sources, and each kind has its own unique benefits and challenges. Understanding the multi-faceted identity of currently available energy sources creates an environment in which new ideas for cleaner and more sustainable energy sourcing can proliferate.

At a high level, energy can be broadly categorized by the process of extracting and converting it into a useful form.

Energy Produced from Chemical Reaction

Energy derived from coal, crude oil, natural gas, and biomass is primarily produced as a result of bonds breaking during a chemical reaction. When heated, burned, or fermented, organic matter releases energy, which is converted into mechanical or electrical energy.

These sources can be stored, distributed, and shared relatively easily and do not have to be converted immediately for power consumption. However, the resulting chemical reaction produces environmentally harmful waste products.

Though the processes to extract these organic sources of energy have been refined for many years to achieve reliable and cheap energy, they can be risky and are perceived as invasive to mother nature.

According to the 2022 bp Statistical Review of World Energy, approximately 50% of the world’s energy consumption comes from petroleum and natural gas; another 25% from coal. Though there was a small decline in demand for oil from 2019 to 2021, the overall demand for fossil fuels remained unchanged during the same time frame, mostly due to the increase in natural gas and coal consumption.

Energy Produced from Mechanical Reaction

Energy captured from the earth’s heat or the movement of wind and water results from the mechanical processes enabled by the turning of turbines in source-rich environments. These turbines spin to produce electricity inside a generator.

Solar energy does not require the use of a generator but produces electricity due to the release of electrons from the semiconducting materials found on a solar panel. The electricity produced by geothermal, wind, solar, and hydropower is then converted from direct current to alternating current electricity.

Electricity is most useful for immediate consumption, as storage requires the use of batteries–a process that turns electrical energy into chemical energy that can then be accessed in much the same way that coal, crude oil, natural gas, and biomass produce energy.

Energy Produced from a Combination of Reactions

Hydrogen energy comes from a unique blend of both electrical and chemical energy processes. Despite hydrogen being the most abundant element on earth, it is rarely found on its own, requiring a two-step process to extract and convert energy into a usable form. Hydrogen is primarily produced as a by-product of fossil fuels, with its own set of emissions challenges related to separating the hydrogen from the hydrocarbons.

Many use electrolysis to separate hydrogen from other elements before performing a chemical reaction to create electrical energy inside of a contained fuel cell. The electrolysis process is certainly a more environmentally-friendly solution, but there are still great risks with hydrogen energy–it is highly flammable, and its general energy output is less than that of other electricity-generating methods.

Energy Produced from Nuclear Reaction

Finally, energy originating from the splitting of an atom’s nucleus, mostly through nuclear fission, is yet another way to produce energy. A large volume of heat is released when an atom is bombarded by neutrons in a nuclear power plant, which is then converted to electrical energy.

This process also produces a particularly sensitive by-product known as radiation, and with it, radioactive waste. The proper handling of radiation and radioactive waste is of utmost concern, as its effects can be incredibly damaging to the environment surrounding a nuclear power plant.

Nuclear fission produces minimal carbon, so nuclear energy is oft considered environmentally safe–as long as strict protocols are followed to ensure proper storage and disposal of radiation and radioactive waste.

Nuclear to Mechanical to Chemical?

Interestingly enough, the Earth’s heat comes from the decay of radioactive materials in the Earth’s core, loosely linking nuclear power production back to geothermal energy production.

It’s also clear the conversion of energy into electricity is the cleanest option for the environment, yet adequate infrastructure remains limited in supply and accessibility. If not consumed immediately as electricity, energy is thus converted into a chemical form for the convenience of storage and distribution it provides.

Perhaps the expertise and talent of Houstonians serving the flourishing academic and industrial sectors of energy development will soon resolve many of our current energy challenges by exploring further the circular dynamic of the energy environment. Be sure to check out our Events Page to find the networking event that best serves your interest in the Energy Transition.


------

Lindsey Ferrell is a contributing writer to EnergyCapitalHTX and founder of Guerrella & Co.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Tesla sales tumble 13% as Musk backlash, competition and aging lineup turn off buyers

Tesla Talk

Tesla sales fell 13% in the first three months of the year, another sign that Elon Musk’s once high-flying electric car company is struggling to attract buyers.

The double-digit drop is likely due to a combination of factors, including its aging lineup, competition from rivals and a backlash from Musk’s embrace of right wing politics. It also is a warning that the company’s first-quarter earnings report later this month could disappoint investors.

Tesla reported deliveries of 336,681 globally in the January to March quarter. The figure was down from sales of 387,000 in the same period a year ago. The decline came despite deep discounts, zero financing and other incentives.

Analysts polled by FactSet expected much higher deliveries of 408,000.

Dan Ives of Wedbush said in a note to clients that Tesla is seeing soft demand in the United States and China, as well as facing pressure in Europe.

“The brand crisis issues are clearly having a negative impact on Tesla...there is no debate,” he said.

Ives said that Wall Street financial analysts knew the first-quarter figures were likely to be bad, but that it was even worse than expected, calling them a “disaster on every metric.”

The sales drop came three weeks after President Donald Trump held an extraordinary press conference outside the White House in which he praised Tesla, blasted boycotts against the company and bought a Tesla himself while TV cameras rolled in an effort to help lift sales.

“I don’t like what’s happening to you,” said Trump, before slipping into a red Model S and exclaiming, “Wow. That’s beautiful.”

After falling as much as 6% in early Wednesday, Tesla stock shot up more than 5% in afternoon trading after a report from Politico, citing anonymous sources, that Musk may soon step down from leadership of his Department of Government Efficiency, the cost-cutting group that has led to tens of thousands of federal workers losing their jobs.

Tesla investors have complained the DOGE work has diverted Musk's focus from Tesla, where he is the CEO. On Tuesday, New York City's comptroller overseeing pension funds down $300 million this year on Tesla holdings called for a lawsuit accusing a distracted Musk of "driving Tesla off a financial cliff.”

Tesla’s stock has plunged by roughly half since hitting a mid-December record as expectations of a lighter regulatory touch and big profits with Donald Trump as president were replaced by fear that the boycott of Musk's cars and other problems could hit the company hard.

Analysts are still not sure exactly how much the fall in sales is due to the protests or other factors. Electric car sales have been sluggish in general, and Tesla in particular is suffering as car buyers hold off from buying its bestselling Model Y while waiting for an updated version.

Still, even bullish financial analysts who earlier downplayed the backlash to Musk’s polarizing political stances are acknowledging that it is hurting the company, something that Musk also recently acknowledged.

“This is a very expensive job,” Musk said at a Wisconsin rally on Sunday, referring to his DOGE role. “My Tesla stock and the stock of everyone who holds Tesla has gone roughly in half."

The protests come as the Austin, Texas electric vehicle maker faces fierce competition from other EV makers offering vastly improved models, including those of BYD. The Chinese EV giant unveiled in March a technology that allows it cars to charge up in just five to eight minutes.

Tesla is expected to report earnings of 48 cents per share for the first quarter later this month, up 7% from a year earlier, according to a survey of financial analysts who the car company by research firm FactSet.

Nearly all of Tesla’s sales in the quarter came from the smaller and less-expensive Models 3 and Y, with the company selling less than 13,000 more expensive models, which include X and S as well as the Cybertruck.

Houston Energy and Climate Startup Week announces 2025 dates, key events

comeback tour

Six local organizations focused on the energy transition have teamed up to bring back Houston Energy and Climate Startup Week.

The second annual event will take place Sept. 15-19, according to an announcement. The Ion District will host many of the week's events.

Houston Energy and Climate Startup Week was founded in 2024 by Rice Alliance for Technology and Entrepreneurship, Halliburton Labs, Greentown Labs, Houston Energy Transition Initiative (HETI), Digital Wildcatters and Activate.

“Houston Energy and Climate Startup Week was created to answer a fundamental question: Can we achieve more by working together than we can alone?” Jane Stricker, senior vice president at the Greater Houston Partnership and executive director of HETI, said in the release.

So far, events for the 2025 Houston Energy and Climate Startup Week include an introduction to climatetech accelerator Activate's latest cohort, the Rice Alliance Energy Tech Venture Forum, a showcase from Greentown Labs' ACCEL cohort, and Halliburton Labs Pitch Day.

Houston organizations New Climate Ventures and Digital Wildcatters, along with Global Corporate Venturing, are slated to offer programming again in 2025. And new partners, Avatar Innovations and Decarbonization Partners, are slated to introduce events. Find a full schedule here.

Other organizations can begin entering calendar submissions starting in May, according to the release.

Last year, Houston Energy and Climate Startup Week welcomed more than 2,000 attendees, investors and industry leaders to more than 30 events. It featured more than 100 speakers and showcased more than 125 startups.

"In 2024, we set out to build something with lasting impact—rooted in the ingenuity of Houston’s technologists and founders. Thanks to a collaborative effort across industry, academia, and startups, we’ve only just begun to showcase Houston’s strengths and invite others to be part of this movement," Stricker added in the release. "We can’t wait to see the city rise to the occasion again in 2025.”

Dow aims to power Texas manufacturing complex with next-gen nuclear reactors

Clean Energy

Dow, a major producer of chemicals and plastics, wants to use next-generation nuclear reactors for clean power and steam at a Texas manufacturing complex instead of natural gas.

Dow's subsidiary, Long Mott Energy, applied Monday to the U.S. Nuclear Regulatory Commission for a construction permit. It said the project with X-energy, an advanced nuclear reactor and fuel company, would nearly eliminate the emissions associated with power and steam generation at its plant in Seadrift, Texas, avoiding roughly 500,000 metric tons of planet-warming greenhouse gas emissions annually.

If built and operated as planned, it would be the first U.S. commercial advanced nuclear power plant for an industrial site, according to the NRC.

For many, nuclear power is emerging as an answer to meet a soaring demand for electricity nationwide, driven by the expansion of data centers and artificial intelligence, manufacturing and electrification, and to stave off the worst effects of a warming planet. However, there are safety and security concerns, the Union of Concerned Scientists cautions. The question of how to store hazardous nuclear waste in the U.S. is unresolved, too.

Dow wants four of X-energy's advanced small modular reactors, the Xe-100. Combined, those could supply up to 320 megawatts of electricity or 800 megawatts of thermal power. X-energy CEO J. Clay Sell said the project would demonstrate how new nuclear technology can meet the massive growth in electricity demand.

The Seadrift manufacturing complex, at about 4,700 acres, has eight production plants owned by Dow and one owned by Braskem. There, Dow makes plastics for a variety of uses including food and beverage packaging and wire and cable insulation, as well as glycols for antifreeze, polyester fabrics and bottles, and oxide derivatives for health and beauty products.

Edward Stones, the business vice president of energy and climate at Dow, said submitting the permit application is an important next step in expanding access to safe, clean, reliable, cost-competitive nuclear energy in the United States. The project is supported by the Department of Energy’s Advanced Reactor Demonstration Program.

The NRC expects the review to take three years or less. If a permit is issued, construction could begin at the end of this decade, so the reactors would be ready early in the 2030s, as the natural gas-fired equipment is retired.

A total of four applicants have asked the NRC for construction permits for advanced nuclear reactors. The NRC issued a permit to Abilene Christian University for a research reactor and to Kairos Power for one reactor and two reactor test versions of that company's design. It's reviewing an application by Bill Gates and his energy company, TerraPower, to build an advanced reactor in Wyoming.

X-energy is also collaborating with Amazon to bring more than 5 gigawatts of new nuclear power projects online across the United States by 2039, beginning in Washington state. Amazon and other tech giants have committed to using renewable energy to meet the surging demand from data centers and artificial intelligence and address climate change.