We're No. 1

Texas ranks among the leading states for projected wind power capacity

Texas gets a gold star when it comes to projected wind power capacity. Photo via Getty Images

A new report ranks Texas in the top three states that are blowing away nationwide wind power capacity projections.

Texas, Wyoming, and Iowa are standing out in terms of wind power capacity, according to a report from Texas Real Estate Source, a Texas real estate, travel, and lifestyle website, that analyzed all 50 states and ranked them by total projected capacity, capacity per capita, and capacity per square mile.

Nationwide wind power capacity is projected to grow exponentially in the coming years, with Texas, Wyoming, and Iowa leading the charge. With 44,974 megawatts of projected wind power capacity, Texas leads the country in terms of volume. Wyoming, meanwhile, leads the nation in projected wind power capacity per capita with 6,679 MW serving a population of 581,381, and Iowa takes first place in projected wind power capacity per square mile.

"As renewable energy continues to command center-stage attention and massive financial investment, wind power has proven to be an indispensable tool in the clean energy toolbox," reads the report.

In its top spot, Texas' projected wind power capacity is more than triple the capacity of second place, Oklahoma, but the Lone Star State falls to ninth place in the ranking of capacity per capita with 1.5 kilowatts.

“It’s no surprise to see Texas significantly outpacing the nation in installed and projected wind power capacity," says a spokesperson from Texas Real Estate Source. "The combination of boundless land, favorable wind patterns, and highly-respected research institutions has made it the perfect place for wind power adoption. It’s revealing, however, to see the per capita and per square mile rankings: they give us a more complete picture of which states are at the forefront of wind power development.”

A few other states to take note of in the report are California and Arkansas. California ranks No. 7 when it comes to total projected wind power capacity but only is No. 24 in the per capita ranking. And, considering the state has only 104 MW currently under construction, California doesn't seem to be keeping up with its population.

Arkansas, meanwhile, has 180 MW currently under construction — previously having a projected zero MW of wind power capacity. Once this is done, Arkansas will outperform 17 other states.

When it comes to wind power jobs, the Lone Star State is making some moves on that front too, according to another report. The SmartAsset study found that 2.23 percent of workers in the Houston area hold down jobs classified as “green.” Per the Department of Energy, Texas tallied almost 25,500 wind energy jobs in 2021.

Trending News

A View From HETI

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

Trending News