money moves

Google to invest $1B in clean energy, data center tech in Texas

U.S. Congressman Jake Ellzey made the announcement in Dallas last week. Photo courtesy of Google

Google is making a big investment in Texas to the tune of $1 billion.

According to a news release from the company, the tech giant will spend more than $1 billion to support its cloud and data center infrastructure and expand its commitment to clean energy.

The $1 billion will be spent on data center campuses in Midlothian and Red Oak to help meet growing demand for Google Cloud, AI innovations, and other digital products and services such as Search, Maps, and Workspace.

In addition to its data center investment, Google has also forged long-term power purchase agreements with Houston-based Engie, as well as Madrid-based entities Elawan, Grupo Cobra, and X-ELIO for solar energy based in Texas. Together, these new agreements are expected to provide 375 MW of carbon-free energy capacity, which will help support Google’s operations in Texas.

These agreements were facilitated through LEAP (LevelTen Energy’s Accelerated Process), which was co-developed by Google and LevelTen Energy to make sourcing and executing clean energy PPAs more efficient, and contributes to the company’s ambitious 2030 goal to run on 24/7 carbon-free energy on every grid where it operates.

The company has contracted with energy partners to bring more than 2,800 megawatts (MW) of new wind and solar projects to the state. Google’s CFE percentage in the ERCOT grid region, which powers its Texas data centers, nearly doubled from 41 percent in 2022 to 79 percent in 2023.

The initiatives were announced at a conference in Midlothian on August 15, attended by business leaders and politicians including U.S. Congressman Jake Ellzey, Google Cloud VP Yolande Piazza, Ted Cruz, and Citi CIO Shadman Zafar.

The Dallas cloud region is part of Google Cloud's global network of 40 regions that delivers services to large enterprises, startups, and public sector organizations.

In a statement, Piazza said that "expanding our cloud and data center infrastructure in Midlothian and Red Oak reflects our confidence in the state's ability to lead in the digital economy."

Data centers are the engines behind the growing digital economy. Google has helped train more than 1 million residents in digital skills through partnerships with 590 local organizations, including public libraries, chambers of commerce, and community colleges.

In addition to its cloud region and Midlothian data center, Google has offices in Austin, Dallas, and Houston. The new Google’s total investment in Texas to more than $2.7 billion.

———

This article originally ran on CultureMap.

Trending News

A View From HETI

Greenhouse gases continue to rise, and the challenges they pose are not going away. Photo via Getty Images

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

Trending News