money moves

Google to invest $1B in clean energy, data center tech in Texas

U.S. Congressman Jake Ellzey made the announcement in Dallas last week. Photo courtesy of Google

Google is making a big investment in Texas to the tune of $1 billion.

According to a news release from the company, the tech giant will spend more than $1 billion to support its cloud and data center infrastructure and expand its commitment to clean energy.

The $1 billion will be spent on data center campuses in Midlothian and Red Oak to help meet growing demand for Google Cloud, AI innovations, and other digital products and services such as Search, Maps, and Workspace.

In addition to its data center investment, Google has also forged long-term power purchase agreements with Houston-based Engie, as well as Madrid-based entities Elawan, Grupo Cobra, and X-ELIO for solar energy based in Texas. Together, these new agreements are expected to provide 375 MW of carbon-free energy capacity, which will help support Google’s operations in Texas.

These agreements were facilitated through LEAP (LevelTen Energy’s Accelerated Process), which was co-developed by Google and LevelTen Energy to make sourcing and executing clean energy PPAs more efficient, and contributes to the company’s ambitious 2030 goal to run on 24/7 carbon-free energy on every grid where it operates.

The company has contracted with energy partners to bring more than 2,800 megawatts (MW) of new wind and solar projects to the state. Google’s CFE percentage in the ERCOT grid region, which powers its Texas data centers, nearly doubled from 41 percent in 2022 to 79 percent in 2023.

The initiatives were announced at a conference in Midlothian on August 15, attended by business leaders and politicians including U.S. Congressman Jake Ellzey, Google Cloud VP Yolande Piazza, Ted Cruz, and Citi CIO Shadman Zafar.

The Dallas cloud region is part of Google Cloud's global network of 40 regions that delivers services to large enterprises, startups, and public sector organizations.

In a statement, Piazza said that "expanding our cloud and data center infrastructure in Midlothian and Red Oak reflects our confidence in the state's ability to lead in the digital economy."

Data centers are the engines behind the growing digital economy. Google has helped train more than 1 million residents in digital skills through partnerships with 590 local organizations, including public libraries, chambers of commerce, and community colleges.

In addition to its cloud region and Midlothian data center, Google has offices in Austin, Dallas, and Houston. The new Google’s total investment in Texas to more than $2.7 billion.

———

This article originally ran on CultureMap.

Trending News

A View From HETI

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

Trending News