guest column

Houston expert: Why climate action needs better PR and how to love the climate apocalypse

Houston climate tech founder weighs in on his observations on what's true, what's exaggerated, and what all humans can agree on about the climate crisis. Photo via Getty Imagees

The last thing anyone wants in 2024 is a reminder of the impending climate apocalypse, but here it is: There is a scientific consensus that the world climate is trending towards uninhabitable for many species, including humans, due in large part to results of human activity.

Psychologists today observe a growing trend of patients with eco-anxiety or climate doom, reflecting some people’s inability to cope with their climate fears. The Edelman Trust Barometer, in its most recent survey respondents in 14 countries, reports that 93 percent “believe that climate change poses a serious and imminent threat to the planet.”

Until recently reviewing this report, I was unaware that 93 percent of any of us could agree on anything. It got me thinking, how much of our problem today is based on misunderstanding both the nature of the problem and the solution?

We’ve been worried for good reason before 

It’s worth keeping in mind that climate change is not the first time smart people thought humans were doomed by our own successes or failures. Robert Malthus theorized at the end of the 18th century that projected human fertility would certainly outpace agricultural production. Just a century and a half later, about half of all Americans expected a nuclear war, and the number jumped to as high as 80 percent expecting the next war to be nuclear. Yes, global hunger and nuclear threats still exist, but our results have outperformed the worst of those dire projections.

We are worried for good reason today 

Today changing climate conditions have grabbed the headlines. The world’s climate is changing at a rate faster than we can model effectively, though our best modeling suggests significant, coordinated, global efforts are necessary to reverse current trends. While there’s still lots to learn, the consensus is that we are approaching a global temperature barrier across which we may not be able to quickly return. These conclusions are worrisome.

How did we get here?

Our reliance on hydrocarbons is at the heart of our climate challenge. If combusting them is so damaging, why do we keep doing it? We know enough about our human cognitive biases to say that humans tend to “live in the moment” when it comes to decision making. Nobel Prize-winning economic research suggests we choose behaviors that reward us today rather than those with longer term payoffs. Also, changing behaviors around hydrocarbons is hard. Crude oil, natural gas and coal have played a central role in the reduction of human suffering over time, helping to lift entire populations out of poverty, providing the power for our modern lives and even supplying instrumental materials for clothes and packaging. It’s hard to stop relying on a resource so plentiful, versatile and reliable.

How do we get out of here?

Technological advances in the future may help us address climate in new and unexpected ways. If we do nothing and hope for the best, what’s the alternative? We can take confidence that we’ve addressed difficult problems before. We can also take confidence that advancements like nuclear, solar, geothermal and wind power are already supplementing our primary reliance on hydrocarbons.

The path forward will be extending the utility of these existing alternatives and identifying new technologies. We need to reduce emissions and to withdraw greenhouse gasses (GHGs) that have already been emitted. The nascent energy transition will continue to be funded by venture capitalists, government spending/incentives and private philanthropy. Larger funding sources will come from private equity and public markets, as successful technologies compete for more traditional sources of capital.

Climate Tech will be a large piece of the climate puzzle

My biases are likely clear: the same global capitalism that brought about our complicated modern world, with its apparent abundance and related climate consequences, has the best chance to save us. Early stage climate tech funding is increasing, even if it’s still too small. It has been observed that climate tech startups receiving funding today fail to track solutions for industries in proportion to their related production of GHGs. For instance, the agriculture and food sector creates about 18 percent of global GHGs, while climate tech companies seeking to address that sector receive about 9 percent of climate tech funding. These misalignments aside, the trendlines are in the right direction.

What can you do?

From a psychological perspective, healthy coping means making small decisions that address your fears, even if you can’t eliminate the root causes. Where does that leave you?

Be a voice for reasonable change. Make changes in your behavior where and when you can. Also, take comfort when you see existing industries adopting meaningful sustainable practices at faster rates. Support the companies you believe are part of the solution.

We are already seeing a burgeoning climate tech industry across the globe and here at home. With concerted efforts like the Ion and Greentown Labs, the Houston climate tech sector is helping to lead the charge. In what was even recently an unthinkable reality, the United States has taken a leadership role. Tellingly, we are not leading necessarily by setting targets, but instead by funding young startups and new infrastructure like the hydrogen hubs. We don’t know when or where the next Thomas Edison will emerge to shine a new light in a dark world. However, I do suspect that that woman or man is alive today, and it’s our job to keep building a world worth that person saving.

---

Chris Wood is the co-founder of Houston-based Moonshot Compost.

Trending News

A View From HETI

Vema Hydrogen is conducting a pilot for its Engineered Mineral Hydrogen technology. Photo courtesy Vema Hydrogen.

Houston climatech company Vema Hydrogen recently completed drilling its first two pilot wells in Quebec for its Engineered Mineral Hydrogen (EMH) pilot. The company says the project is the first EMH pilot of its kind.

Vema’s EMH technology produces low-cost, high-purity hydrogen from subsurface rock formations. It has the capacity to support e-fuel and clean mobility industries and the shipping and air transport markets. The pilot project is the first field deployment of the company’s technology.

“This pilot will provide the critical data needed to validate Engineered Mineral Hydrogen at commercial scale and demonstrate that Quebec can lead the world in this emerging clean energy category,” Pierre Levin, CEO of Vema Hydrogen, said in a news release.

Levin added that the sample collected thus far in the pilot is “exactly what we expected, and is very promising for hydrogen yields.”

Through the pilot, Vema will collect core samples and begin subsurface analysis to evaluate fluid movement and monitor hydrogen production from the wells. The data collected from the pilot will shape Vema's plans for commercialization and provide documentation for proof of concept in the field, according to the news release.

“Vema Hydrogen perfectly embodies the spirit of the grey to green movement: transforming mining liabilities into drivers of innovation and ecological transition,” Ludovic Beauregard, circular economy commissioner at the Thetford Region Economic Development Corporation, added in the release.

“This project demonstrates that it is possible to reconcile the revitalization of mining regions, clean energy and sustainable economic development for these areas.”

In addition to its pilot in Canada, Vema also recently signed a 10-year hydrogen purchase and sale agreement with San Francisco-based Verne Power to supply clean hydrogen for data centers across California. The company was selected as a Qualified Supplier by The First Public Hydrogen Authority, which will allow it to supply clean hydrogen at scale to California’s municipalities, transit agencies and businesses through the FPH2 network.

Vema aims to produce Engineered Mineral Hydrogen for less than $1 per kilogram. The company, founded in 2024, is working toward a gigawatt-scale hydrogen supply in North America.

Trending News