guest column

Houston expert: Why climate action needs better PR and how to love the climate apocalypse

Houston climate tech founder weighs in on his observations on what's true, what's exaggerated, and what all humans can agree on about the climate crisis. Photo via Getty Imagees

The last thing anyone wants in 2024 is a reminder of the impending climate apocalypse, but here it is: There is a scientific consensus that the world climate is trending towards uninhabitable for many species, including humans, due in large part to results of human activity.

Psychologists today observe a growing trend of patients with eco-anxiety or climate doom, reflecting some people’s inability to cope with their climate fears. The Edelman Trust Barometer, in its most recent survey respondents in 14 countries, reports that 93 percent “believe that climate change poses a serious and imminent threat to the planet.”

Until recently reviewing this report, I was unaware that 93 percent of any of us could agree on anything. It got me thinking, how much of our problem today is based on misunderstanding both the nature of the problem and the solution?

We’ve been worried for good reason before 

It’s worth keeping in mind that climate change is not the first time smart people thought humans were doomed by our own successes or failures. Robert Malthus theorized at the end of the 18th century that projected human fertility would certainly outpace agricultural production. Just a century and a half later, about half of all Americans expected a nuclear war, and the number jumped to as high as 80 percent expecting the next war to be nuclear. Yes, global hunger and nuclear threats still exist, but our results have outperformed the worst of those dire projections.

We are worried for good reason today 

Today changing climate conditions have grabbed the headlines. The world’s climate is changing at a rate faster than we can model effectively, though our best modeling suggests significant, coordinated, global efforts are necessary to reverse current trends. While there’s still lots to learn, the consensus is that we are approaching a global temperature barrier across which we may not be able to quickly return. These conclusions are worrisome.

How did we get here?

Our reliance on hydrocarbons is at the heart of our climate challenge. If combusting them is so damaging, why do we keep doing it? We know enough about our human cognitive biases to say that humans tend to “live in the moment” when it comes to decision making. Nobel Prize-winning economic research suggests we choose behaviors that reward us today rather than those with longer term payoffs. Also, changing behaviors around hydrocarbons is hard. Crude oil, natural gas and coal have played a central role in the reduction of human suffering over time, helping to lift entire populations out of poverty, providing the power for our modern lives and even supplying instrumental materials for clothes and packaging. It’s hard to stop relying on a resource so plentiful, versatile and reliable.

How do we get out of here?

Technological advances in the future may help us address climate in new and unexpected ways. If we do nothing and hope for the best, what’s the alternative? We can take confidence that we’ve addressed difficult problems before. We can also take confidence that advancements like nuclear, solar, geothermal and wind power are already supplementing our primary reliance on hydrocarbons.

The path forward will be extending the utility of these existing alternatives and identifying new technologies. We need to reduce emissions and to withdraw greenhouse gasses (GHGs) that have already been emitted. The nascent energy transition will continue to be funded by venture capitalists, government spending/incentives and private philanthropy. Larger funding sources will come from private equity and public markets, as successful technologies compete for more traditional sources of capital.

Climate Tech will be a large piece of the climate puzzle

My biases are likely clear: the same global capitalism that brought about our complicated modern world, with its apparent abundance and related climate consequences, has the best chance to save us. Early stage climate tech funding is increasing, even if it’s still too small. It has been observed that climate tech startups receiving funding today fail to track solutions for industries in proportion to their related production of GHGs. For instance, the agriculture and food sector creates about 18 percent of global GHGs, while climate tech companies seeking to address that sector receive about 9 percent of climate tech funding. These misalignments aside, the trendlines are in the right direction.

What can you do?

From a psychological perspective, healthy coping means making small decisions that address your fears, even if you can’t eliminate the root causes. Where does that leave you?

Be a voice for reasonable change. Make changes in your behavior where and when you can. Also, take comfort when you see existing industries adopting meaningful sustainable practices at faster rates. Support the companies you believe are part of the solution.

We are already seeing a burgeoning climate tech industry across the globe and here at home. With concerted efforts like the Ion and Greentown Labs, the Houston climate tech sector is helping to lead the charge. In what was even recently an unthinkable reality, the United States has taken a leadership role. Tellingly, we are not leading necessarily by setting targets, but instead by funding young startups and new infrastructure like the hydrogen hubs. We don’t know when or where the next Thomas Edison will emerge to shine a new light in a dark world. However, I do suspect that that woman or man is alive today, and it’s our job to keep building a world worth that person saving.

---

Chris Wood is the co-founder of Houston-based Moonshot Compost.

Trending News

A View From HETI

Researchers created a light-driven catalyst for hydrogen production, offering an emission-free alternative to traditional methods. Photo by Jeff Fitlow/Rice University

Researchers at Rice University have developed a catalyst that could render steam methane reforming, or SMR, entirely emission-free by using light rather than heat to drive the reaction.

The researchers believe the work could prove to be a breakthrough for extending catalyst lifetimes. This will improve efficiencies and reduce costs for a number of industrial processes that are affected by a form of carbon buildup that can deactivate catalysts called coking.

The new copper-rhodium photocatalyst uses an antenna-reactor design. When it is exposed to a specific wavelength of light it breaks down methane and water vapor without external heating into hydrogen and carbon monoxide. The importance of this is it is a chemical industry feedstock that is not a greenhouse gas. Rice’s work also shows that the antenna-reactor technology can overcome catalyst deactivation due to oxidation and coking by employing hot carriers to remove oxygen species and carbon deposits, which effectively regenerates the catalyst with light.

The new SMR reaction pathway build off a 2011 discovery from Peter Nordlander, Rice’s Wiess Chair and Professor of Physics and Astronomy and professor of electrical and computer engineering and materials science and nanoengineering, and Naomi Halas. They are the authors on the study about the research that was published in Nature Catalysis. The study showed that the collective oscillations of electrons that occur when metal nanoparticles are exposed to light can emit “hot carriers” or high-energy electrons and holes that can be used to drive chemical reactions.

“This is one of our most impactful findings so far, because it offers an improved alternative to what is arguably the most important chemical reaction for modern society,” Norlander says in a news release.

The research was supported by Robert A. Welch Foundation (C-1220, C-1222) and the Air Force Office of Scientific Research (FA9550-15-1-0022) with the Shared Equipment Authority at Rice providing data analysis support.

“This research showcases the potential for innovative photochemistry to reshape critical industrial processes, moving us closer to an environmentally sustainable energy future,” Halas adds.

Hydrogen has been studied as it could assist with the transition to a sustainable energy ecosystem, but the chemical process responsible for more than half of the current global hydrogen production is a substantial source of greenhouse gas emissions.Hydrogen is produced in large facilities that require the gas to be transported to its point of use. Light-driven SMR allows for on-demand hydrogen generation,which researchers believe is a key benefit for use in mobility-related applications like hydrogen fueling stations or and possibly vehicles.

Trending News