Houston climate tech founder weighs in on his observations on what's true, what's exaggerated, and what all humans can agree on about the climate crisis. Photo via Getty Imagees

The last thing anyone wants in 2024 is a reminder of the impending climate apocalypse, but here it is: There is a scientific consensus that the world climate is trending towards uninhabitable for many species, including humans, due in large part to results of human activity.

Psychologists today observe a growing trend of patients with eco-anxiety or climate doom, reflecting some people’s inability to cope with their climate fears. The Edelman Trust Barometer, in its most recent survey respondents in 14 countries, reports that 93 percent “believe that climate change poses a serious and imminent threat to the planet.”

Until recently reviewing this report, I was unaware that 93 percent of any of us could agree on anything. It got me thinking, how much of our problem today is based on misunderstanding both the nature of the problem and the solution?

We’ve been worried for good reason before 

It’s worth keeping in mind that climate change is not the first time smart people thought humans were doomed by our own successes or failures. Robert Malthus theorized at the end of the 18th century that projected human fertility would certainly outpace agricultural production. Just a century and a half later, about half of all Americans expected a nuclear war, and the number jumped to as high as 80 percent expecting the next war to be nuclear. Yes, global hunger and nuclear threats still exist, but our results have outperformed the worst of those dire projections.

We are worried for good reason today 

Today changing climate conditions have grabbed the headlines. The world’s climate is changing at a rate faster than we can model effectively, though our best modeling suggests significant, coordinated, global efforts are necessary to reverse current trends. While there’s still lots to learn, the consensus is that we are approaching a global temperature barrier across which we may not be able to quickly return. These conclusions are worrisome.

How did we get here?

Our reliance on hydrocarbons is at the heart of our climate challenge. If combusting them is so damaging, why do we keep doing it? We know enough about our human cognitive biases to say that humans tend to “live in the moment” when it comes to decision making. Nobel Prize-winning economic research suggests we choose behaviors that reward us today rather than those with longer term payoffs. Also, changing behaviors around hydrocarbons is hard. Crude oil, natural gas and coal have played a central role in the reduction of human suffering over time, helping to lift entire populations out of poverty, providing the power for our modern lives and even supplying instrumental materials for clothes and packaging. It’s hard to stop relying on a resource so plentiful, versatile and reliable.

How do we get out of here?

Technological advances in the future may help us address climate in new and unexpected ways. If we do nothing and hope for the best, what’s the alternative? We can take confidence that we’ve addressed difficult problems before. We can also take confidence that advancements like nuclear, solar, geothermal and wind power are already supplementing our primary reliance on hydrocarbons.

The path forward will be extending the utility of these existing alternatives and identifying new technologies. We need to reduce emissions and to withdraw greenhouse gasses (GHGs) that have already been emitted. The nascent energy transition will continue to be funded by venture capitalists, government spending/incentives and private philanthropy. Larger funding sources will come from private equity and public markets, as successful technologies compete for more traditional sources of capital.

Climate Tech will be a large piece of the climate puzzle

My biases are likely clear: the same global capitalism that brought about our complicated modern world, with its apparent abundance and related climate consequences, has the best chance to save us. Early stage climate tech funding is increasing, even if it’s still too small. It has been observed that climate tech startups receiving funding today fail to track solutions for industries in proportion to their related production of GHGs. For instance, the agriculture and food sector creates about 18 percent of global GHGs, while climate tech companies seeking to address that sector receive about 9 percent of climate tech funding. These misalignments aside, the trendlines are in the right direction.

What can you do?

From a psychological perspective, healthy coping means making small decisions that address your fears, even if you can’t eliminate the root causes. Where does that leave you?

Be a voice for reasonable change. Make changes in your behavior where and when you can. Also, take comfort when you see existing industries adopting meaningful sustainable practices at faster rates. Support the companies you believe are part of the solution.

We are already seeing a burgeoning climate tech industry across the globe and here at home. With concerted efforts like the Ion and Greentown Labs, the Houston climate tech sector is helping to lead the charge. In what was even recently an unthinkable reality, the United States has taken a leadership role. Tellingly, we are not leading necessarily by setting targets, but instead by funding young startups and new infrastructure like the hydrogen hubs. We don’t know when or where the next Thomas Edison will emerge to shine a new light in a dark world. However, I do suspect that that woman or man is alive today, and it’s our job to keep building a world worth that person saving.

---

Chris Wood is the co-founder of Houston-based Moonshot Compost.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Engie signs deal to supply wind power for Texas data center

wind deal

Houston-based Engie North America, which specializes in generating low-carbon power, has sealed a preliminary deal to supply wind power to a Cipher Mining data center in Texas.

Under the tentative agreement, Cipher could buy as much as 300 megawatts of clean energy from one of Engie’s wind projects. The financial terms of the deal weren’t disclosed.

Cipher Mining develops and operates large data centers for cryptocurrency mining and high-performance computing.

In November, New York City-based Cipher said it bought a 250-acre site in West Texas for a data center with up to 100 megawatts of capacity. Cipher paid $4.1 million for the property.

“By pairing the data center with renewable energy, this strategic collaboration supports the use of surplus energy during periods of excess generation, while enhancing grid stability and reliability,” Engie said in a news release about the Cipher agreement.

The Engie-Cipher deal comes amid the need for more power in Texas due to several factors. The U.S. Energy Information Administration reported in October that data centers and cryptocurrency mining are driving up demand for power in the Lone Star State. Population growth is also putting pressure on the state’s energy supply.

Last year, Engie added 4.2 gigawatts of renewable energy capacity worldwide, bringing the total capacity to 46 gigawatts as of December 31. Also last year, Engie signed a new contract with Meta (Facebook's owner) and expanded its partnership with Google in the U.S. and Belgium.

Houston researchers make headway on developing low-cost sodium-ion batteries

energy storage

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

ExxonMobil lands major partnership for clean hydrogen facility in Baytown

power deal

Exxon Mobil and Japanese import/export company Marubeni Corp. have signed a long-term offtake agreement for 250,000 tonnes of low-carbon ammonia per year from ExxonMobil’s forthcoming facility in Baytown, Texas.

“This is another positive step forward for our landmark project,” Barry Engle, president of ExxonMobil Low Carbon Solutions, said in a news release. “By using American-produced natural gas we can boost global energy supply, support Japan’s decarbonization goals and create jobs at home. Our strong relationship with Marubeni sets the stage for delivering low-carbon ammonia from the U.S. to Japan for years to come."

The companies plan to produce low-carbon hydrogen with approximately 98% of CO2 removed and low-carbon ammonia. Marubeni will supply the ammonia mainly to Kobe Power Plant, a subsidiary of Kobe Steel, and has also agreed to acquire an equity stake in ExxonMobil’s low-carbon hydrogen and ammonia facility, which is expected to be one of the largest of its kind.

The Baytown facility aims to produce up to 1 billion cubic feet daily of “virtually carbon-free” hydrogen. It can also produce more than 1 million tons of low-carbon ammonia per year. A final investment decision is expected in 2025 that will be contingent on government policy and necessary regulatory permits, according to the release.

The Kobe Power Plant aims to co-fire low-carbon ammonia with existing fuel, and reduce CO2 emissions by Japan’s fiscal year of 2030. Marubeni also aims to assist the decarbonization of Japan’s power sector and steel manufacturing industry, chemical industry, transportation industry and various others sectors.

“Marubeni will take this first step together with ExxonMobil in the aim of establishing a global low-carbon ammonia supply chain for Japan through the supply of low-carbon ammonia to the Kobe Power Plant,” Yoshiaki Yokota, senior managing executive officer at Marubeni Corp., added in the news release. “Additionally, we aim to collaborate beyond this supply chain and strive towards the launch of a global market for low-carbon ammonia. We hope to continue to actively cooperate with ExxonMobil, with a view of utilizing this experience and relationship we have built to strategically decarbonize our power projects in Japan and Southeast Asia in the near future.”