powering on

Packaging producer procures power purchase plan with Texas solar projects

The two projects are in Wharton County and Bell County and will add renewable energy to the Texas energy grid. Photo via Pexels

A leading provider of sustainable fiber-based paper and packaging solutions is supporting the first of two Texas-based solar projects.

WestRock set the stage by entering into virtual power purchase agreements with Houston-based ENGIE North America. The two projects are in Wharton County and Bell County and will add renewable energy to the Texas energy grid.

Bernard Creek Solar is the first of two solar projects that are part of the VPPAs between WestRock and ENGIE, and is currently operating southwest of Houston in Wharton County. WestRock contracted 207 megawatts from the project Under the VPPA. The 230 megawatts Bernard Creek solar project is projected to produce approximately 500,000 megawatts an hour annually, which will generate over $45 million in revenue for the county and create more than 250 jobs during construction.

The WestRock VPPA for the Bernard Creek project, and the similar project located in Bell County, will add a total of 282 megawatts of renewable energy to the Texas energy grid.

"We are delighted that Bernard Creek Solar is supporting WestRock’s ambitions to meet its 2030 science-based targets,” Dave Carroll, chief renewables officer at ENGIE, says in a news release. “North AmericaENGIE’s projects are focused on meeting the specific needs of our clients as we work together to accelerate the energy transition in North America, and this agreement reflects that."

The VPPAs with WestRock have contributed to ENGIE to surpass more than 1 gigawatt of signed power purchases. ENGIE is recognized as the top developer to sell corporate energy PPAs and has ranked in the top three since 2019 with a total corporate PPA portfolio in the USA of 7.3 according to BloombergNEF's latest Market Outlook report. Schneider Electric’s Sustainability Business provided the advisory services and strategy management for these pivotal VPPAs with WestRock.

"We are pleased to play a role in the production of clean energy from large-scale solar projects and to join forces with ENGIE and Schneider Electric to reduce greenhouse gas emissions by adding more renewable energy to the grid,” David B. Sewell, president and CEO at WestRock, adds.

Trending News

A View From HETI

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

Trending News