Utility Global’s technology enables reduction of greenhouse gas emissions along with generation of low-carbon fuels and chemicals. Photo courtesy of Utility Global

Houston-based Utility Global, a maker of decarbonization-focused gas production technology, has raised $53 million in an ongoing series C round.

Among the participants in the round are Canada’s Ontario Power Generation Pension Plan, the XCarb Innovation Fund operated by Luxembourg-based steel company ArcelorMittal, Houston-based investment firm Ara Partners, and Saudi Aramco’s investment arm.

Also, Utility Global and ArcelorMittal have agreed to develop at least one decarbonization facility at an ArcelorMittal steel plant.

The latest infusion of cash will support the rollout of Utility Global’s eXERO technology, including establishment of the company’s first commercial facilities in 2026.

“With the successful completion of its demonstration program at a commercial steel facility resulting in the first hydrogen ever produced from blast furnace off-gasses in a single reactor, the company has shifted to commercial deployments,” Utility Global says in a news release.

Utility Global’s technology enables reduction of greenhouse gas emissions along with generation of low-carbon fuels and chemicals.

“Our eXERO solution is the first of its kind to convert process gasses into clean hydrogen in a single reactor, onsite, in a cost-effective manner that extends the life of existing customer assets and processes while providing significant emissions reductions,” says Claus Nussgruber, CEO of Utility Global.

NanoTech is targeting new overseas markets for its energy efficiency products. Photo via Getty Images

Promising Houston startup expands energy efficiency product to Middle East, Singapore

big move

NanoTech Materials has announced a big expansion for its business.

The Houston company, which created a roof coating using nanotechnology that optimizes energy efficiency, has partnered with Terminal Subsea Solutions Marine Service SP to bring its products to the Gulf Cooperation Council and Singapore. TSSM will become a partner of Houston’s NanoTech Materials products, which will include the Cool Roof Coat, Vehicular Coat, and Insulative Coat for the GCC countries and Singapore.

NanoTech Materials technology that ranges from roof coatings on mid- to low-rise buildings to shipping container insulation to coating trucks and transportation vehicles will be utilized by TSSM in the partnership. NanoTech’s efforts are focused on heat mitigation that can reduce energy costs, enhance worker safety, and minimize business risks in the process.

“Businesses and communities within the GCC and Singapore feel the impact of extreme temperatures and longer Summers more acutely than any other region in the world,” Mike Francis, CEO of NanoTech Materials, says in a news release. “We have an opportunity to make a real impact here through reduced energy load, cooler and safer working conditions, and a reduced carbon emissions output from the hottest, driest place on earth. We are incredibly excited to be partnering with our colleagues at TSSM to bring this powerful technology to the region.”

One of the areas that will benefit from this collaboration is the Middle East. The GCC region is characterized by a desert climate, which has average annual temperature reaching 107.6°F and summer peaks climbing as high as 130°F. The effects of these extreme conditions can be dangerous for workers especially with strict labor laws mandating midday work bans under black flag conditions, which can result in productivity losses as well.

NanoTech’s proprietary technology, the Insulative Ceramic Particle (ICP), will be used to address challenges in energy efficiency and heat control in the logistics and built environment sector. The platform can be integrated into many applications, and the impact can range from reducing greenhouse gas emissions to protecting communities that are wildfire-prone. The core of the technology has a lower conductivity than aerogels. It also has a “near-perfect emissivity score” according to the company. The NanoTech ICP is integrated with base matrix carriers; building materials, coatings, and substrates, which gives the materials heat conservation, rejection, or containment properties.

By combining the ICP into an acrylic roof coating, NanoTech has created the Cool Roof Coat, which reflects sunlight and increases the material's heat resistance. This can lower indoor temperatures by 25 to 45°F in single-story buildings and reduce the carbon emissions of mid to low-rise buildings. This can potentially equal energy savings from 20 percent up to 50 percent, which would surpass the average 15 percent savings of traditional reflective only coatings.

“This technology will have a huge impact on supporting the region's aggressive climate initiatives, such as Saudi Arabia’s Green Initiative, aiming to reduce carbon emissions by 278 million tons annually by 2030,” Jameel Ahmed, managing director at TSSM, says in the release. “The regional efforts to enhance climate action and economic opportunities through substantial investments in green technologies and projects are evident, and we are proud to be offering a product that can make a difference.”

NanoTech says its coating maintains its effectiveness over time and doesn’t suffer UV degradation issues which are helpful, especially in extreme weather conditions workers and businesses face in regions like the Middle East.

High-tech firetrucks are ready to serve the area that includes George Bush Intercontinental Airport. Photo courtesy of Houston Airports

Houston Airports roll out eco-friendly fleet of fire rescue vehicles

TECH TO THE RESCUE

Houston Airports and the Houston Fire Department will roll out a new fleet of eco-friendly and health-promoting vehicles this summer.

Four new Aircraft Rescue and Fire Fighting (ARFF) trucks will be deployed at HFD Stations 99 and 92 near IAH. The vehicles were purchased with $4.6 million from the Airport Improvement Fund and will replace a fleet purchased in 2006.

One truck is already operating HFD Station 99. Others are expected to be operational by August, according to Houston Airports.

"The safety of passengers and crew at Bush Airport is our top priority," Steve Runge, director of operations for Houston Airports, says in a statement. "These new ARFF trucks represent a significant investment in the latest firefighting technology, ensuring the Houston Fire Department has the resources it needs to respond swiftly and effectively to any aircraft emergency while utilizing eco-friendly foam."

The vehicles feature several innovative features including:

  • Synthetic fluorine-free foam that extinguishes fires with minimal environmental impact
  • High-capacity water pumps that deliver up to 1,200 gallons of water per minute
  • Specialized rescue equipment for rescuing passengers and crew from crashes
  • Rosenbauer re-circulation air scrubber system that reduces firefighter’s exposure to carcinogenic toxins

They can carry 3,000 gallons of water, 400 gallons of foam, 450 pounds of Purple K dry-chemical and 460 pounds of Halotron to extinguish fires and rescue passengers and crew, according to Houston Airports.

"From the health of the firefighters to protecting people and property at Bush Airport, we appreciate this investment by Houston Airports,” Ronald Krusleski, senior captain and ARFF coordinator for the Houston Fire Department, adds.

Houston Airports also plans to build a 21,000-square-foot facility to replace the current HFD 92 at IAH that will include six apparatus bays, fire inspector and administrative offices, and direct access to the airfield, according to a statement. It'll be funded by $30 million from the Bipartisan Infrastructure Law Airport Infrastructure Grants for Fiscal Year 2024 from the FAA. Hobby Airport also received $15 million to demolish and reconstruct existing ARFF buildings.

Last year Houston Airports also received $12.5 million for projects aimed at reducing greenhouse gas emissions. The projects included replacing existing generators and conducting an energy audit.

———

This article originally ran on InnovationMap.

The two projects are in Wharton County and Bell County and will add renewable energy to the Texas energy grid. Photo via Pexels

Packaging producer procures power purchase plan with Texas solar projects

powering on

A leading provider of sustainable fiber-based paper and packaging solutions is supporting the first of two Texas-based solar projects.

WestRock set the stage by entering into virtual power purchase agreements with Houston-based ENGIE North America. The two projects are in Wharton County and Bell County and will add renewable energy to the Texas energy grid.

Bernard Creek Solar is the first of two solar projects that are part of the VPPAs between WestRock and ENGIE, and is currently operating southwest of Houston in Wharton County. WestRock contracted 207 megawatts from the project Under the VPPA. The 230 megawatts Bernard Creek solar project is projected to produce approximately 500,000 megawatts an hour annually, which will generate over $45 million in revenue for the county and create more than 250 jobs during construction.

The WestRock VPPA for the Bernard Creek project, and the similar project located in Bell County, will add a total of 282 megawatts of renewable energy to the Texas energy grid.

"We are delighted that Bernard Creek Solar is supporting WestRock’s ambitions to meet its 2030 science-based targets,” Dave Carroll, chief renewables officer at ENGIE, says in a news release. “North AmericaENGIE’s projects are focused on meeting the specific needs of our clients as we work together to accelerate the energy transition in North America, and this agreement reflects that."

The VPPAs with WestRock have contributed to ENGIE to surpass more than 1 gigawatt of signed power purchases. ENGIE is recognized as the top developer to sell corporate energy PPAs and has ranked in the top three since 2019 with a total corporate PPA portfolio in the USA of 7.3 according to BloombergNEF's latest Market Outlook report. Schneider Electric’s Sustainability Business provided the advisory services and strategy management for these pivotal VPPAs with WestRock.

"We are pleased to play a role in the production of clean energy from large-scale solar projects and to join forces with ENGIE and Schneider Electric to reduce greenhouse gas emissions by adding more renewable energy to the grid,” David B. Sewell, president and CEO at WestRock, adds.

Switching fully to electric vehicles could prevent 157 premature deaths each month in Houston. Photo courtesy

New Houston study shows health impacts of full vehicle electrification in major U.S. cities

what could be

A new study from the University of Houston shows that there's no one-size-fits-all strategy for full vehicle electrification in America's largest U.S. cities.

The study by Ali Mousavinezhad and Yunsoo Choi considered changes in air pollution, specifically PM2.5 and ozone levels, in Houston, Los Angeles, New York and Chicago under different electrification scenarios and how the changes could impact public health.

“Our findings indicate vehicle electrification generally contributes to reducing greenhouse gas emissions, improving air quality, and lowering the mortality rate associated with exposure to toxic air pollutants,” Mousavinezhad said in a statement.

However, Mousavinezhad and Choi found that full electrification in Los Angeles could have negative impacts on public health.

Switching fully to electric vehicles could prevent 157 premature deaths each month in Houston, 796 deaths in New York and 328 in Chicago, according to the study. But in Los Angeles, full electrification would increase mortality.

Additionally, full electrification would save between $51 million to $249 million per day for New York, Chicago, and Houston in health-related costs. But Los Angeles would face economic losses of up to $18 million per day.

This was largely due to the unique weather and geography in Los Angeles that can trap air pollutants that harm the lungs. The study found that full electrification would lead to increases in PM2.5 and MDA8 ozone. According to UH, the study reveals the importance and "complexity of air quality management."

“The four largest U.S. cities have distinct anthropogenic sources of air pollutants and greenhouse gases, “Choi added. “Each city requires unique regulations or strategies, including different scenarios for the adoption of electric vehicles, to reduce concentrations of these pollutants and greenhouse gases effectively.”

Mousavinezhad, lead author, is a recent Ph.D. graduate from UH. Choi is a professor of atmospheric chemistry, AI deep learning, air quality modeling and satellite remote sensing. The study, titled “Air quality and health co-benefits of vehicle electrification and emission controls in the most populated United States urban hubs: insights from New York, Los Angeles, Chicago and Houston,” was published in the journal Science of the Total Environment earlier this year.

Earlier this year, Texas ranked low in a study that looked at the closest EV charging stations equivalent to a trip to the gas station. However, another study showed that Texas is among the top of the pack for states with the most electric vehicle registrations, but Houston fell behind other large metros in the state for EV friendliness. Click here to read more about both reports.
Vaulted Deep, Mati Carbon, and Climate Robotics secured finalists spots in XPRIZE's four-year global competition is designed to combat climate change with innovative solutions. Photo via Getty Images

3 Houston clean energy startups advance in Elon Musk-backed cleantech competition

finalists

Twenty promising climatetech companies were selected to advance to the final stage of a global competition backed by Elon Musk's foundation — and three of the finalists hail from Houston.

Vaulted Deep, Mati Carbon, and Climate Robotics secured finalists spots in XPRIZE's four-year global competition is designed to combat climate change with innovative solutions. XPRIZE Carbon Removal will offer $100 million to innovators who are creating solutions that removes carbon dioxide directly from the atmosphere or the oceans, and then sequester it sustainably.

"For the world to effectively address greenhouse gas emissions, carbon removal is an essential element of the path to Net Zero. There's no way to reverse humanity's impact on the climate without extracting carbon from our atmosphere and oceans," Anousheh Ansari, CEO of XPRIZE, says in a news release. "We need a range of bold, innovative CDR solutions to manage the vast quantities of CO2 released into our environment and impacting our planet.

"The teams that have been competing for this Prize are all part of building a set of robust and effective solutions and our 20 teams advancing to the final stage of XPRIZE Carbon Removal will have an opportunity to demonstrate their potential to have a significant impact on the climate," Ansari continues.

The finalists — categorized into four sections: air, rocks, oceans, and land — were selected based upon their performance in three key areas: operations, sustainability, and cost. The full list of 20 finalists is available online.

Around 20 Houston-area companies were initially identified by the challenge. Here's a look at the three that are advancing to the finals:

  • Mati, in the Rocks category, durably removes carbon from the atmosphere using basalt based enhanced rock weathering (ERW) in smallholder rice paddy farms. This process, which is being demonstrated in India, removes atmospheric CO2 while adding key nutrients in the soil helping to restore degraded soils to benefit smallholder farmers.
  • Climate Robotics, in the Land category, enables broad-scale agriculture adoption of biochar which builds soil health and removes excess carbon from the atmosphere. The company's mobile technology converts crop residues into durable biochar on the fly and in the field, making the economics work for farmers and our ecosystems.
  • Vaulted Deep, also in the Land category, delivers scalable, permanent, carbon removal by geologically sequestering carbon-filled organic wastes. Their patented slurry sequestration, which involves the geological injection of minimally processed wastes for permanent (10,000+ year) carbon removal.

"This cohort of exceptional teams represents a diversity of innovations and solutions across a range of CDR pathways, and shows the significant progress the industry is making in a short period of time," Nikki Batchelor, executive director of XPRIZE Carbon Removal, says in the release. "Over the past three years, this competition has helped accelerate the pace of technology development for a whole new industry of high-potential solutions aimed at reversing climate change."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers earn $3.3M in DOE funding to develop safer underground power line installation

going under

Researchers from the University of Houston — along with a Hawaiian company — have received $3.3 million in funding to explore artificial intelligence-backed subsurface sensing system for safe and efficient underground power line installation.

Houston's power lines are above ground, but studies show underground power is more reliable. Installing underground power lines is costly and disruptive, but the U.S. Department of Energy, in an effort to find a solution, has put $34 million into its new GOPHURRS program, which stands for Grid Overhaul with Proactive, High-speed Undergrounding for Reliability, Resilience, and Security. The funding has been distributed across 12 projects in 11 states.

“Modernizing our nation’s power grid is essential to building a clean energy future that lowers energy costs for working Americans and strengthens our national security,” U.S. Secretary of Energy Jennifer M. Granholm says in a DOE press release.

UH and Hawaii-based Oceanit are behind one of the funded projects, entitled “Artificial Intelligence and Unmanned Aerial Vehicle Real-Time Advanced Look-Ahead Subsurface Sensor.”

The researchers are looking a developing a subsurface sensing system for underground power line installation, potentially using machine learning, electromagnetic resistivity well logging, and drone technology to predict and sense obstacles to installation.

Jiefu Chen, associate professor of electrical and computer engineering at UH, is a key collaborator on the project, focused on electromagnetic antennas installed on UAV and HDD drilling string. He's working with Yueqin Huang, assistant professor of information science technology, who leads the geophysical signal processing and Xuqing Wu, associate professor of computer information systems, responsible for integrating machine learning.

“Advanced subsurface sensing and characterization technologies are essential for the undergrounding of power lines,” says Chen in the release. “This initiative can enhance the grid's resilience against natural hazards such as wildfires and hurricanes.”

“If proven successful, our proposed look-ahead subsurface sensing system could significantly reduce the costs of horizontal directional drilling for installing underground utilities,” Chen continues. “Promoting HDD offers environmental advantages over traditional trenching methods and enhances the power grid’s resilience.”

Aramco partners to demonstrate compact carbon capture technology for gas turbines

dream team

Integrated energy and chemicals company Aramco has signed a collaboration agreement with Carbon Clean and SAMSUNG E&A in an effort to showcase new carbon capture technology.

The technology demonstration will be used to deploy Carbon Clean’s novel CycloneCC technology to capture CO2 from natural gas turbine exhaust streams containing approximately 4 percent CO2, according to Aramco.

Carbon Clean, which U.S. headquarters are located in Houston at the Ion, boasts technology that has captured nearly two million tons of carbon dioxide at almost 50 sites around the world. Aramco’s U.S. headquarters is also in Houston.

“The potential for CycloneCC in the US and Houston area is huge,” Aniruddha Sharma, chair and CEO of Carbon Clean, previously shared with EnergyCapital. “It is optimised for low to medium scale industrial emitters and recent Rice University research on the US Gulf Coast, for example, found that it is well suited to 73 percent of Gulf Coast emitters.”

The modular CycloneCC unit has a 50 percent smaller footprint compared to conventional carbon capture processes. The CycloneCC technology is estimated to reduce the total installed cost of carbon capture systems by up to 50 percent compared to conventional systems if successful. The goal is to also maintain process efficiency even at low CO2 concentrations. CycloneCC’s performance is achieved through two process intensification technologies, rotating packed beds (RPBs) and Carbon Clean’s proprietary APBS-CDRMax solvent.

“Its compact, modular design should be easily integrated with gas turbines, delivering high performance carbon capture in an industrial setting where space is typically limited,” Sharma says in a news release.

The engineering, procurement and construction of the plant will be done by SAMSUNG E&A .The unit will be installed on the sales gas compressor turbine exhaust gas stack,which can provide performance data under real-world conditions.

“Aramco and Samsung Ventures are investors in Carbon Clean, so we’re proud to deepen our relationship through this partnership,” Sharma adds. “This first-of-a-kind deployment capturing very low concentrations of CO2 is a key milestone in scaling up and commercializing CycloneCC.”

In September, Carbon Clean also announced a deal with PETRONAS CCS Solution to collaborate and evaluate Carbon Clean’s carbon capture and storage technology with Carbon Clean's CycloneCC tech. Last year, Abu Dhabi National Oil Co. (ADNOC) selected Carbon Clean for a carbon capture project in Abu Dhabi.