seeing green

How this Houston hospital is leading sustainable health care

Houston Methodist has several ongoing and future initiatives dedicated to reducing the hospital system's carbon footprint. Photo via HoustonMethodist.org

The United States health care sector contributes around 8.5 percent of greenhouse gas emissions, and one Houston hospital is committed to doing its part in reducing the industry's carbon footprint.

Houston Methodist, which recently opened a new tech hub in the Ion in midtown, has put in place several initiatives that reflect a more sustainable future for health care. The organization, which has seven hospitals in the Houston area, revealed some of these ongoing and planned projects at a recent event.

"Houston Methodist is always looking ahead on ways — not only of how we are taking care of patients — but what are we doing to create this environment and making the right efforts for sustainability, which we should all be doing," Michelle Stansbury, vice president of innovation and IT applications at Houston Methodist, says on this week's episode of the Houston Innovators Podcast. "We have to protect this environment that we have or it may not be the same for our children going forward."

The hospital system is currently in the design phase for installing solar panels on the Josie Roberts Administration Building in the Texas Medical Center. This project, in partnership with Houston Methodist's Energy and Facilities workgroup, will be the first step toward renewable energy consumption for the hospital.

Houston Methodist has already rolled out food composting initiatives at its locations in Sugar Land, The Woodlands, and Willowbrook locations — with plans for additional campuses to follow. According to a presentation from Jason Fischer, director of the Office of Sustainability at Methodist, the hospital system has already diverted nearly 100,000 lbs. of food waste from landfills.

Preventing waste recycling or reusing items is another focus of Houston Methodist, Stansbury says, from creating a workflow that enables reusing items that are able to be sanitized rather than thrown away to sustainably getting rid of expired materials. The U.S. has rules about the shelf lives of health care products, but other countries don't have as strict of mandates.

"We're sending (supplies) to other countries that can still use these products," Stansbury explains. "Knowing that we're helping to care for other individuals, to me I think it's very valuable. Other countries don't have the resources that the United States does."

Another notable initiative is incorporating greenspace for patients to enjoy. Houston Methodist is currently in construction on a 26-story hospital tower in the Texas Medical Center that will feature the Centennial Rooftop Garden on the 14th floor.

The Houston Methodist's sustainability team has several other initiatives both ongoing and in the works. More information is available on the hospital's website.

Centennial Tower’s 14th floor will feature an outdoor rooftop garden. Rendering courtesy of Houston Methodist

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News