Memorial Hermann has its eyes to the sky for an upcoming innovative service it's launching in 2026. Photo courtesy of Zipline

A Houston hospital system has announced that it has plans to launch a drone delivery service that will replace traditional car deliveries in 2026.

Memorial Hermann Health System announced that it intends to be the first health care provider in Houston to roll out drone delivery services from San Francisco-based Zipline, a venture capital-backed tech company founded in 2014 that's completed 1 million drone deliveries.

"As a system, we are continuously seeking ways to improve the patient experience and bring greater health and value to the communities we serve. Zipline provides an innovative solution to helping our patients access the medications they need, quickly and conveniently, at no added cost to them," Alec King, executive vice president and CFO for Memorial Hermann, says in a news release.

Zipline boasts of achieving delivery times seven times faster than traditional car deliveries and can usually drop off packages at a rate of a mile a minute. The drones, called Zips, can navigate any weather conditions and complete their missions with zero emissions.

Per the release, the service will be used to deliver medical supplies and prescriptions to patients or supplies or samples between its locations.

"Completing more than one million commercial deliveries has shown us that when you improve health care logistics, you improve every level of the patient experience. It means people get better, faster, more convenient care, even from the comfort of their own home," adds Keller Rinaudo Cliffton, co-founder and CEO of Zipline. "Innovators like Memorial Hermann are leading the way to bring better care to the U.S., and it's going to happen much faster than you might expect."

———

This article originally ran on InnovationMap.

Houston Methodist has several ongoing and future initiatives dedicated to reducing the hospital system's carbon footprint. Photo via HoustonMethodist.org

How this Houston hospital is leading sustainable health care

seeing green

The United States health care sector contributes around 8.5 percent of greenhouse gas emissions, and one Houston hospital is committed to doing its part in reducing the industry's carbon footprint.

Houston Methodist, which recently opened a new tech hub in the Ion in midtown, has put in place several initiatives that reflect a more sustainable future for health care. The organization, which has seven hospitals in the Houston area, revealed some of these ongoing and planned projects at a recent event.

"Houston Methodist is always looking ahead on ways — not only of how we are taking care of patients — but what are we doing to create this environment and making the right efforts for sustainability, which we should all be doing," Michelle Stansbury, vice president of innovation and IT applications at Houston Methodist, says on this week's episode of the Houston Innovators Podcast. "We have to protect this environment that we have or it may not be the same for our children going forward."

The hospital system is currently in the design phase for installing solar panels on the Josie Roberts Administration Building in the Texas Medical Center. This project, in partnership with Houston Methodist's Energy and Facilities workgroup, will be the first step toward renewable energy consumption for the hospital.

Houston Methodist has already rolled out food composting initiatives at its locations in Sugar Land, The Woodlands, and Willowbrook locations — with plans for additional campuses to follow. According to a presentation from Jason Fischer, director of the Office of Sustainability at Methodist, the hospital system has already diverted nearly 100,000 lbs. of food waste from landfills.

Preventing waste recycling or reusing items is another focus of Houston Methodist, Stansbury says, from creating a workflow that enables reusing items that are able to be sanitized rather than thrown away to sustainably getting rid of expired materials. The U.S. has rules about the shelf lives of health care products, but other countries don't have as strict of mandates.

"We're sending (supplies) to other countries that can still use these products," Stansbury explains. "Knowing that we're helping to care for other individuals, to me I think it's very valuable. Other countries don't have the resources that the United States does."

Another notable initiative is incorporating greenspace for patients to enjoy. Houston Methodist is currently in construction on a 26-story hospital tower in the Texas Medical Center that will feature the Centennial Rooftop Garden on the 14th floor.

The Houston Methodist's sustainability team has several other initiatives both ongoing and in the works. More information is available on the hospital's website.

Centennial Tower’s 14th floor will feature an outdoor rooftop garden. Rendering courtesy of Houston Methodist

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Baker Hughes launches major clean energy initiatives with U.S. military and more

clean team

Energy tech company Baker Hughes announced two major clean energy initiatives this month.

The Houston-based company has teamed up with Dallas-based Frontier Infrastructure to develop carbon capture and storage (CCS), power generation and data center operations in the U.S.

Baker Hughes will supply technology for Frontier’s nearly 100,000-acre CCS hub in Wyoming, which will provide open-access CO2 storage for manufacturers and ethanol producers, as well as future Frontier projects. Frontier has already begun drilling activities at the Wyoming site.

“Baker Hughes is committed to delivering innovative solutions that support increasing energy demand, in part driven by the rapid adoption of AI, while ensuring we continue to enable the decarbonization of the industry,” says Lorenzo Simonelli, chairman and CEO of Baker Hughes.

Additionally, Baker Hughes announced this week that it was selected by the U.S. Air Force and the Department of Defense’s Chief Digital and Artificial Intelligence Office (CDAO) to develop utility-scale geothermal power plants that would power global U.S. military bases.

Baker Hughes was granted an "awardable," or eligible, status through the CDAO's Tradewinds Solutions Marketplace, which aims to accelerate "mission-critical technologies," including AI, machine learning and resilient energy technologies. The potential geothermal plants would provide cost-effective electricity, even during a grid outage.

“The ability of geothermal to provide reliable, secure baseload power makes it an ideal addition to America’s energy mix,” Ajit Menon, vice president of geothermal, oilfield services and equipment at Baker Hughes, said in a news release. “Baker Hughes has been a pioneer in this field for more than 40 years and our unique subsurface-to-surface expertise and advanced technology across the geothermal value chain will help the U.S. military unlock this critical domestic energy source, while simultaneously driving economic growth and energy independence.”

4 Houston inventors named to prestigious national organization

Top Honor

Houston is home to four new senior members of the National Academy of Inventors.

To be eligible to be an NAI Senior Member, candidates must be active faculty, scientists and administrators from NAI member institutions that have demonstrated innovation and produced technologies that have “brought, or aspire to bring, real impact on the welfare of society,” according to the NAI. The members have also succeeded in patents, licensing and commercialization, and educating and mentoring.

The University of Houston announced that three professors were selected to join the prestigious NAI list of senior members. UH now has 39 faculty members on the NAI list.

“We congratulate these three esteemed colleagues on being named NAI Senior Members,” Ramanan Krishnamoorti, vice president for energy and innovation at UH, said in a news release. “This recognition is a testament to their dedication, research excellence and pursuit of real-world impact by knowledge and technologies. Their achievements continue to elevate the University as a leader in innovation and entrepreneurship.”

UH’s new senior members include:

  • Birol Dindoruk, the American Association of Drilling Engineers Endowed Professor of Petroleum Engineering and Chemical and Biomolecular Engineering at the Cullen College of Engineering. He is known for his research in carbon capture and storage, fluid-rock interactions and hydrogen storage. He holds three patents.
  • Megan Robertson, the Neal R. Amundson professor of chemical and biomolecular engineering at UH’s Cullen College of Engineering. She is developing new polymers and groundbreaking strategies for recycling and reusing plastics. Robertson currently has three patents and two more patent applications pending.
  • Francisco Robles Hernandez, a professor of mechanical engineering technology at the UH College of Technology. He holds four patents, and several others are under review. His work focuses on carbon materials, including pioneering work with graphene and designs with steel and aluminum used in automotives and railroads.

“Being named a senior member is both an honor and a responsibility, and I appreciate UH for nurturing an environment where creativity and innovation are not just encouraged but expected,” Dindoruk said. “Ultimately, this milestone is not just about past achievements. It is about future opportunities to innovate, collaborate and make a meaningful impact on both industry and society.”

Allison Post, associate director of electrophysiology research and innovations and manager of innovation partnerships at the Texas Heart Institute at Baylor College of Medicine, also made the list. Post was recognized for her work in biomedical engineering and commitment to advancing cardiovascular care through innovations. Post is the youngest member to be inducted this year.

Other notable Texas honorees include Emma Fan from the University of Texas, Arum Han from Texas A&M and Panos Shiakolas at UT Arlington.

In 2024, Edward Ratner, a computer information systems lecturer in the Department of Information Science Technology at the University of Houston’s Cullen College of Engineering, and Omid Veiseh, a bioengineer at Rice University and director of the Biotech Launch Pad, were named NAI fellows.

The Senior Member Induction Ceremony will honor the 2025 class at NAI’s Annual Conference June 23-26 in Atlanta, Georgia.

---

A version of this story first appeared on our sister site, InnovationMap.com.

Houston researcher dives into accessibility of public EV charging stations

EV equity

A Rice University professor wants to redraw the map for the placement of electric vehicle charging stations to level the playing field for access to EV power sources.

Xinwu Qian, assistant professor of civil and environmental engineering at Rice, is leading research to rethink where EV charging stations should be installed so that they’re convenient for all motorists going about their day-to-day activities.

“Charging an electric vehicle isn’t just about plugging it in and waiting — it takes 30 minutes to an hour even with the fastest charger — therefore, it’s an activity layered with social, economic, and practical implications,” Qian says on Rice’s website. “While we’ve made great strides in EV adoption, the invisible barriers to public charging access remain a significant challenge.”

According to Qian’s research, public charging stations are more commonly located near low-income households, as these residents are less likely to afford or enjoy access to at-home charging. However, these stations are often far from where they conduct everyday activities.

The Rice report explains that, in contrast, public charging stations are geographically farther from affluent suburban areas. However, they often fit more seamlessly into these residents' daily schedules. As a result, low-income communities face an opportunity gap, where public charging may exist in theory but is less practical in reality.

A 2024 study led by Qian analyzed data from over 28,000 public EV charging stations and 5.5 million points across 20 U.S. cities.

“The findings were stark: Income, rather than proximity, was the dominant factor in determining who benefits most from public EV infrastructure,” Qian says.

“Wealthier individuals were more likely to find a charging station at places they frequent, and they also had the flexibility to spend time at those places while charging their vehicles,” he adds. “Meanwhile, lower-income communities struggled to integrate public charging into their routines due to a compounded issue of shorter dwell times and less alignment with daily activities.”

To make matters worse, businesses often target high-income people when they install charging stations, Qian’s research revealed.

“It’s a sad reality,” Qian said. “If we don’t address these systemic issues now, we risk deepening the divide between those who can afford EVs and those who can’t.”

A grant from the National Science Foundation backs Qian’s further research into this subject. He says the public and private sectors must collaborate to address the inequity in access to public charging stations for EVs.