Houston Methodist has several ongoing and future initiatives dedicated to reducing the hospital system's carbon footprint. Photo via HoustonMethodist.org

The United States health care sector contributes around 8.5 percent of greenhouse gas emissions, and one Houston hospital is committed to doing its part in reducing the industry's carbon footprint.

Houston Methodist, which recently opened a new tech hub in the Ion in midtown, has put in place several initiatives that reflect a more sustainable future for health care. The organization, which has seven hospitals in the Houston area, revealed some of these ongoing and planned projects at a recent event.

"Houston Methodist is always looking ahead on ways — not only of how we are taking care of patients — but what are we doing to create this environment and making the right efforts for sustainability, which we should all be doing," Michelle Stansbury, vice president of innovation and IT applications at Houston Methodist, says on this week's episode of the Houston Innovators Podcast. "We have to protect this environment that we have or it may not be the same for our children going forward."

The hospital system is currently in the design phase for installing solar panels on the Josie Roberts Administration Building in the Texas Medical Center. This project, in partnership with Houston Methodist's Energy and Facilities workgroup, will be the first step toward renewable energy consumption for the hospital.

Houston Methodist has already rolled out food composting initiatives at its locations in Sugar Land, The Woodlands, and Willowbrook locations — with plans for additional campuses to follow. According to a presentation from Jason Fischer, director of the Office of Sustainability at Methodist, the hospital system has already diverted nearly 100,000 lbs. of food waste from landfills.

Preventing waste recycling or reusing items is another focus of Houston Methodist, Stansbury says, from creating a workflow that enables reusing items that are able to be sanitized rather than thrown away to sustainably getting rid of expired materials. The U.S. has rules about the shelf lives of health care products, but other countries don't have as strict of mandates.

"We're sending (supplies) to other countries that can still use these products," Stansbury explains. "Knowing that we're helping to care for other individuals, to me I think it's very valuable. Other countries don't have the resources that the United States does."

Another notable initiative is incorporating greenspace for patients to enjoy. Houston Methodist is currently in construction on a 26-story hospital tower in the Texas Medical Center that will feature the Centennial Rooftop Garden on the 14th floor.

The Houston Methodist's sustainability team has several other initiatives both ongoing and in the works. More information is available on the hospital's website.

Centennial Tower’s 14th floor will feature an outdoor rooftop garden. Rendering courtesy of Houston Methodist

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

new findings

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Oxy subsidiary granted landmark EPA permits for carbon capture facility

making progress

Houston’s Occidental Petroleum Corp., or Oxy, and its subsidiary 1PointFive announced that the U.S Environmental Protection Agency approved its Class VI permits to sequester carbon dioxide captured from its STRATOS Direct Air Capture (DAC) facility near Odessa. These are the first such permits issued for a DAC project, according to a news release.

The $1.3 billion STRATOS project, which 1PointFive is developing through a joint venture with investment manager BlackRock, is designed to capture up to 500,000 metric tons of CO2 annually and is expected to begin commercial operations this year. DAC technology pulls CO2 from the air at any location, not just where carbon dioxide is emitted. Major companies, such as Microsoft and AT&T, have secured carbon removal credit agreements through the project.

The permits are issued under the Safe Drinking Water Act's Underground Injection Control program. The captured CO2 will be stored in geologic formations more than a mile underground, meeting the EPA’s review standards.

“This is a significant milestone for the company as we are continuing to develop vital infrastructure that will help the United States achieve energy security,” Vicki Hollub, Oxy president and CEO, said in a news release.“The permits are a catalyst to unlock value from carbon dioxide and advance Direct Air Capture technology as a solution to help organizations address their emissions or produce vital resources and fuels.”

Additionally, Oxy and 1PointFive announced the signing of a 25-year offtake agreement for 2.3 million metric tons of CO2 per year from CF Industries’ upcoming Bluepoint low-carbon ammonia facility in Ascension Parish, Louisiana.

The captured CO2 will be transported to and stored at 1PointFive’s Pelican Sequestration Hub, which is currently under development. Eventually, 1PointFive’s Pelican hub in Louisiana will include infrastructure to safely and economically sequester industrial emissions in underground geologic formations, similar to the STRATOS project.

“CF Industries’ and its partners' confidence in our Pelican Sequestration Hub is a validation of our expertise managing carbon dioxide and how we collaborate with industrial organizations to become their commercial sequestration partner,” Jeff Alvarez, President of 1PointFive Sequestration, said in a news release.

1PointFive is storing up to 20 million tons of CO2 per year, according to the company.

“By working together, we can unlock the potential of American manufacturing and energy production, while advancing industries that deliver high-quality jobs and economic growth,” Alvarez said in a news release.

Houston energy-focused AI platform raises $5M in Mercury-led seed round

fresh funding

Houston-based Collide, a provider of generative artificial intelligence for the energy sector, has raised $5 million in seed funding led by Houston’s Mercury Fund.

Other investors in the seed round include Bryan Sheffield, founder of Austin-based Parsley Energy, which was acquired by Dallas-based Pioneer Natural Resources in 2021; Billy Quinn, founder and managing partner of Dallas-based private equity firm Pearl Energy Investments; and David Albin, co-founder and former managing partner of Dallas-based private equity firm NGP Capital Partners.

“(Collide) co-founders Collin McLelland and Chuck Yates bring a unique understanding of the oil and gas industry,” Blair Garrou, managing partner at Mercury, said in a news release. “Their backgrounds, combined with Collide’s proprietary knowledge base, create a significant and strategic moat for the platform.”

Collide, founded in 2022, says the funding will enable the company to accelerate the development of its GenAI platform. GenAI creates digital content such as images, videos, text, and music.

Originally launched by Houston media organization Digital Wildcatters as “a professional network and digital community for technical discussions and knowledge sharing,” the company says it will now shift its focus to rolling out its enterprise-level, AI-enabled solution.

Collide explains that its platform gathers and synthesizes data from trusted sources to deliver industry insights for oil and gas professionals. Unlike platforms such as OpenAI, Perplexity, and Microsoft Copilot, Collide’s platform “uniquely accesses a comprehensive, industry-specific knowledge base, including technical papers, internal processes, and a curated Q&A database tailored to energy professionals,” the company said.

Collide says its approximately 6,000 platform users span 122 countries.