seeing green

Houston researchers launch 2 nature-based carbon credit projects

Both projects will seek to develop “tracking and evaluation systems for the emerging nature-based carbon credit market.” Photo via Getty Images

A team at Rice University has announced plans for two research projects that will focus on nature-based carbon credits.

The George R. Brown School of Engineering and the Severe Storm Prediction, Education and Evacuation from Disasters (SSPEED) Center reported that the projects will be funded through a gift from Emissions Reduction Corp. with the goal of advancing global decarbonization through a series of carbon sequestration, avoidance and reduction projects.

Both projects will seek to develop “tracking and evaluation systems for the emerging nature-based carbon credit market” according to a news release.

“The Rice School of Engineering is very interested in research into nature-based engineering solutions,” Luay Nakhleh, the William and Stephanie Sick Dean of Engineering and a professor of computer science and biosciences at Rice, says in the release. “For too long, we have used nature as a platform but not as a partner. This research will hopefully open the door on a new era of nature-based engineering. Moreover, this is a very timely initiative as bringing science to bear on the emergent carbon credit economy is of critical importance to meeting the challenges of a changing climate.”

For the first project, which is expected to take six months, the SSPEED Center will be commissioning the design of a digital monitoring, reporting and verification (dMRV) system for tracking nature-based carbon credits using satellite and drone imagery to monitor coastal blue carbon projects, soil, and forest projects.

The direct input of this data into blockchain and other record-keeping technologies will be the main part of the system. .A Houston-based local nonprofit carbon registry BC Carbon, and blockchain provider Change Code will also take part in the research.

The second project will see the SSPEED Center undertake hydrologic computer modeling, and take 12 to 18 months to complete. This will help determine the effectiveness of restoring native prairie grasslands as a flood control technique where a portion of the Brazos River will be modeled relative to predict increases in the frequency of “100-year floods” via climate change. Overall, it will evaluate whether prairie restoration funded via soil carbon credits could mitigate flooding risk, which could eliminate the need to raise the 30 miles of levees in Fort Bend County downstream of the carbon project. The George Foundation,BCarbon, and Fort Bend County Flood Control District will work together on this project.

“Using nature to solve flooding problems has been discussed but seldom executed at the level of a major river system,” Herman Brown Professor of Engineering and SSPEED Center director at Rice Phillip Bedient adds. “We are excited that carbon credits and prairie restoration might break open this nature-based flood engineering area.”

Trending News

A View From HETI

Locksley Resources will provide antimony-rich feedstocks from a project in the Mojave Desert as part of a new partnership with Rice University that aims to develop scalable methods for extracting and utilizing antimony. Photo via locksleyresources.com.au.

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”

Trending News