OpenSafe.AI, a new platform that utilizes AI, data, and hazard and resilience models to support storm response decision makers, has secured an NSF grant. Photo via Getty Images

Researchers from Rice University have secured a $1.5 million grant from the National Science Foundation to continue their work on improving safety and resiliency of coastal communities plagued by flooding and hazardous weather.

The Rice team of engineers and collaborators includes Jamie Padgett, Ben Hu, and Avantika Gori along with David Retchless at Texas A&M University at Galveston. The researchers are working in collaboration with the Severe Storm Prediction, Education and Evacuation from Disasters (SSPEED) Center and the Ken Kennedy Institute at Rice and A&M-Galveston’s Institute for a Disaster Resilient Texas.

Together, the team is developing and hopes to deploy “Open-Source Situational Awareness Framework for Equitable Multi-Hazard Impact Sensing using Responsible AI,” or OpenSafe.AI, a new platform that utilizes AI, data, and hazard and resilience models "to provide timely, reliable and equitable insights to emergency response organizations and communities before, during and after tropical cyclones and coastal storm events," reads a news release from Rice.

“Our goal with this project is to enable communities to better prepare for and navigate severe weather by providing better estimates of what is actually happening or might happen within the next hours or days,” Padgett, Rice’s Stanley C. Moore Professor in Engineering and chair of the Department of Civil and Environmental Engineering, says in the release. “OpenSafe.AI will take into account multiple hazards such as high-speed winds, storm surge and compound flooding and forecast their potential impact on the built environment such as transportation infrastructure performance or hazardous material spills triggered by severe storms.”

OpenSafe.AI platform will be developed to support decision makers before, during, and after a storm.

“By combining cutting-edge AI with a deep understanding of the needs of emergency responders, we aim to provide accurate, real-time information that will enable better decision-making in the face of disasters,” adds Hu, associate professor of computer science at Rice.

In the long term, OpenSafe.AI hopes to explore how the system can be applied to and scaled in other regions in need of equitable resilience to climate-driven hazards.

“Our goal is not only to develop a powerful tool for emergency response agencies along the coast but to ensure that all communities ⎯ especially the ones most vulnerable to storm-induced damage ⎯ can rely on this technology to better respond to and recover from the devastating effects of coastal storms,” adds Gori, assistant professor of civil and environmental engineering at Rice.

Two Houston communities have received funding for programming and workforce development within climate resilience. Photo via Getty Images

Houston Health Department scores $20M grant funding for climate, energy resilience

H-town strong

The city of Houston has secured a $20 million grant from the Environmental Protection Agency to be used to build climate and energy resilience in two local underserved communities.

The Houston Health Department's funding comes from the EPA's Community Change program and will benefit the Greater Fifth Ward and Kashmere Gardens, regions that have faced contamination from the neighboring Union Pacific Railroad site. This grant follows two prior EPA grants from the Vulnerable to Vibrant series that were awarded in 2023.

"Through this grant, we will also aim to enhance a state-of-the-art flood alert system that provides advance warning," Loren Hopkins, HHD's chief environmental science officer, says in a news release. "We will promote and provide education regarding an air permit application warning system, plant fruit trees for flood, heat, and pollution mitigation, develop a hyper-local neighborhood resilience plan, and establish a Houston Environmental Justice Advisory Committee."

The initial $1 million grant will span three years and includes several local partners: HHD, Black United Fund of Texas, Houston Community College, My Brother's Keeper - Houston, City of Houston Solid Waste Management Department, and Environmental Defense Fund. It will fund the creation of free solar workforce development program with the hopes of installing and operating a community solar farm.

A second $500,000 grant will find paid internships to residents for solar deployment in the community and will be led by HHD in partnership with BUFTX, University of Houston Center for Sustainability and Resilience, Air Alliance, Houston Wilderness, and Rice University SSPEED Center/Fang Research Group.

The ultimate goal of these freshly funded initiatives, according to the city, is to strengthen HHD and its partners' efforts in establishing a solar energy system for the community in order to advance the neighborhood’s resilience.

Both projects will seek to develop “tracking and evaluation systems for the emerging nature-based carbon credit market.” Photo via Getty Images

Houston researchers launch 2 nature-based carbon credit projects

seeing green

A team at Rice University has announced plans for two research projects that will focus on nature-based carbon credits.

The George R. Brown School of Engineering and the Severe Storm Prediction, Education and Evacuation from Disasters (SSPEED) Center reported that the projects will be funded through a gift from Emissions Reduction Corp. with the goal of advancing global decarbonization through a series of carbon sequestration, avoidance and reduction projects.

Both projects will seek to develop “tracking and evaluation systems for the emerging nature-based carbon credit market” according to a news release.

“The Rice School of Engineering is very interested in research into nature-based engineering solutions,” Luay Nakhleh, the William and Stephanie Sick Dean of Engineering and a professor of computer science and biosciences at Rice, says in the release. “For too long, we have used nature as a platform but not as a partner. This research will hopefully open the door on a new era of nature-based engineering. Moreover, this is a very timely initiative as bringing science to bear on the emergent carbon credit economy is of critical importance to meeting the challenges of a changing climate.”

For the first project, which is expected to take six months, the SSPEED Center will be commissioning the design of a digital monitoring, reporting and verification (dMRV) system for tracking nature-based carbon credits using satellite and drone imagery to monitor coastal blue carbon projects, soil, and forest projects.

The direct input of this data into blockchain and other record-keeping technologies will be the main part of the system. .A Houston-based local nonprofit carbon registry BC Carbon, and blockchain provider Change Code will also take part in the research.

The second project will see the SSPEED Center undertake hydrologic computer modeling, and take 12 to 18 months to complete. This will help determine the effectiveness of restoring native prairie grasslands as a flood control technique where a portion of the Brazos River will be modeled relative to predict increases in the frequency of “100-year floods” via climate change. Overall, it will evaluate whether prairie restoration funded via soil carbon credits could mitigate flooding risk, which could eliminate the need to raise the 30 miles of levees in Fort Bend County downstream of the carbon project. The George Foundation,BCarbon, and Fort Bend County Flood Control District will work together on this project.

“Using nature to solve flooding problems has been discussed but seldom executed at the level of a major river system,” Herman Brown Professor of Engineering and SSPEED Center director at Rice Phillip Bedient adds. “We are excited that carbon credits and prairie restoration might break open this nature-based flood engineering area.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

ERCOT to capture big share of U.S. solar power growth through 2027

solar growth

Much of the country’s growth in utility-scale solar power generation will happen in the grid operated by the Electric Reliability Council of Texas (ERCOT), according to a new forecast.

The U.S. Energy Information Administration (EIA) predicts that solar power supplied to the ERCOT grid will jump from 56 billion kilowatt-hours in 2025 to 106 billion kilowatt-hours by the end of 2027. That would be an increase of 89 percent.

In tandem with the rapid embrace of solar power, EIA anticipates battery storage capacity for ERCOT will expand from 15 gigawatts in 2025 to 37 gigawatts by the end of 2027, or 147 percent.

EIA expects utility-scale solar to be the country’s fastest-growing source of power generation from 2025 to 2027. It anticipates that this source will climb from 290 billion kilowatt-hours last year to 424 billion kilowatt-hours next year, or 46 percent.

Based on EIA’s projections, ERCOT’s territory would account for one-fourth of the country’s utility-scale solar power generation by the end of next year.

“Solar power and energy storage are the fastest-growing grid technologies in Texas, and can be deployed more quickly than any other generation resource,” according to the Texas Solar + Storage Association. “In the wholesale market, solar and storage are increasing grid reliability, delivering consumer affordability, and driving tax revenue and income streams into rural Texas.”

Expert: Why Texas must make energy transmission a top priority in 2026

guest column

Texas takes pride in running one of the most dynamic and deregulated energy markets in the world, but conversations about electricity rarely focus on what keeps it moving: transmission infrastructure.

As ERCOT projects unprecedented electricity demand growth and grid operators update their forecasts for 2026, it’s becoming increasingly clear that generation, whether renewable or fossil, is only part of the solution. Transmission buildout and sound governing policy now stand as the linchpin for reliability, cost containment, and long-term resilience in a grid under unprecedented stress.

At the heart of this urgency is one simple thing: demand. Over 2024 and 2025, ERCOT has been breaking records at a pace we haven’t seen before. From January through September of 2025 alone, electricity use jumped more than 5% over the year before, the fastest growth of any major U.S. grid. And it’s not slowing down.

The Energy Information Administration expects demand to climb another 14% in 2026, pushing total consumption to roughly 425 terawatt-hours in just the first nine months. That surge isn’t just about more people moving to Texas or running their homes differently; it’s being driven by massive industrial and technology loads that simply weren’t part of the equation ten years ago.

The most dramatic contributor to that rising demand is large-scale infrastructure such as data centers, cloud computing campuses, crypto mining facilities, and electrified industrial sectors. In the latest ERCOT planning update, more than 233 gigawatts of total “large load” interconnection requests were being tracked, an almost 300% jump over just a year earlier, with more than 70% of those requests tied to data centers.

Imagine hundreds of new power plants requesting to connect to the grid, all demanding uninterrupted power 24/7. That’s the scale of the transition Texas is facing, and it’s one of the major reasons transmission planning is no longer back-of-house policy talk but a central grid imperative.

Yet transmission is complicated, costly, and inherently long-lead. It takes three to six years to build new transmission infrastructure, compared with six to twelve months to add a new load or generation project.

This is where Texas will feel the most tension. Current infrastructure can add customers and power plants quickly, but the lines to connect them reliably take time, money, permitting, and political will.

To address these impending needs, ERCOT wrapped up its 2024 Regional Transmission Plan (RTP) at the end of last year, and the message was pretty clear: we’ve got work to do. The plan calls for 274 transmission projects and about 6,000 miles of new, rebuilt, or upgraded lines just to handle the growth coming our way and keep the lights on.

The plan also suggests upgrading to 765-kilovolt transmission lines, a big step beyond the standard 345-kV system. When you start talking about 765-kilovolt transmission lines, that’s a big leap from what Texas normally uses. Those lines are built to move a massive amount of power over long distances, but they’re expensive and complicated, so they’re only considered when planners expect demand to grow far beyond normal levels. Recommending them is a clear signal that incremental upgrades won’t be enough to keep up with where electricity demand is headed.

There’s a reason transmission is suddenly getting so much attention. ERCOT and just about every industry analyst watching Texas are projecting that electricity demand could climb as high as 218 gigawatts by 2031 if even a portion of the massive queue of large-load projects actually comes online. When you focus only on what’s likely to get built, the takeaway is the same: demand is going to stay well above anything we’ve seen before, driven largely by the steady expansion of data centers, cloud computing, and digital infrastructure across the state.

Ultimately, the decisions Texas makes on transmission investment and the policies that determine how those costs are allocated will shape whether 2026 and the years ahead bring greater stability or continued volatility to the grid. Thoughtful planning can support growth while protecting reliability and affordability, but falling short risks making volatility a lasting feature of Texas’s energy landscape.

Transmission Policy: The Other Half of the Equation

Infrastructure investment delivers results only when paired with policies that allow it to operate efficiently and at scale. Recognizing that markets alone won’t solve these challenges, Texas lawmakers and regulators have started creating guardrails.

For example, Senate Bill 6, now part of state law, aims to improve how large energy consumers are managed on the grid, including new rules for data center operations during emergencies and requirements around interconnection. Data centers may even be required to disconnect under extreme conditions to protect overall system reliability, a novel and necessary rule given their scale.

Similarly, House Bill 5066 changed how load forecasting occurs by requiring ERCOT to include utility-reported projections in its planning processes, ensuring transmission planning incorporates real-world expectations. These policy updates matter because grid planning isn’t just a technical checklist. It’s about making sure investment incentives, permitting decisions, and cost-sharing rules are aligned so Texas can grow its economy without putting unnecessary pressure on consumers.

Without thoughtful policy, we risk repeating past grid management mistakes. For example, if transmission projects are delayed or underfunded while new high-demand loads come online, we could see congestion worsen. If that happens, affordable electricity would be located farther from where it’s needed, limiting access to low-cost power for consumers and slowing overall economic growth. That’s especially critical in regions like Houston, where energy costs are already a hot topic for households and businesses alike.

A 2026 View: Strategy Over Shortage

As we look toward 2026, here are the transmission and policy trends that matter most:

  • Pipeline of Projects Must Stay on Track: ERCOT’s RTP is ambitious, and keeping those 274 projects, thousands of circuit miles, and next-generation 765-kV lines moving is crucial for reliability and cost containment.
  • Large Load Forecasting Must Be Nuanced: The explosion in large-load interconnection requests, whether or not every project materializes, signals demand pressure that transmission planners cannot ignore. Building lines ahead of realized demand is not wasteful planning; it’s insurance against cost and reliability breakdowns.
  • Policy Frameworks Must Evolve: Laws like SB 6 and HB 5066 are just the beginning. Texas needs transparent rules for cost allocation, interconnection standards, and emergency protocols that keep consumers protected while supporting innovation and economic growth.
  • Coordination Among Stakeholders Is Critical: Transmission doesn’t stop at one utility’s borders. Regional cooperation among utilities, ERCOT, and local stakeholders is essential to manage congestion and develop systemwide reliability solutions.

Here’s the bottom line: Generation gets the headlines, but transmission makes the grid work. Without a robust transmission buildout and thoughtful governance, even the most advanced generation mix that includes wind, solar, gas, and storage will struggle to deliver the reliability Texans expect at a price they can afford.

In 2026, Texas is not merely testing its grid’s capacity to produce power; it’s testing its ability to move that power where it’s needed most. How we rise to meet that challenge will define the next decade of energy in the Lone Star State.

———

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.