OpenSafe.AI, a new platform that utilizes AI, data, and hazard and resilience models to support storm response decision makers, has secured an NSF grant. Photo via Getty Images

Researchers from Rice University have secured a $1.5 million grant from the National Science Foundation to continue their work on improving safety and resiliency of coastal communities plagued by flooding and hazardous weather.

The Rice team of engineers and collaborators includes Jamie Padgett, Ben Hu, and Avantika Gori along with David Retchless at Texas A&M University at Galveston. The researchers are working in collaboration with the Severe Storm Prediction, Education and Evacuation from Disasters (SSPEED) Center and the Ken Kennedy Institute at Rice and A&M-Galveston’s Institute for a Disaster Resilient Texas.

Together, the team is developing and hopes to deploy “Open-Source Situational Awareness Framework for Equitable Multi-Hazard Impact Sensing using Responsible AI,” or OpenSafe.AI, a new platform that utilizes AI, data, and hazard and resilience models "to provide timely, reliable and equitable insights to emergency response organizations and communities before, during and after tropical cyclones and coastal storm events," reads a news release from Rice.

“Our goal with this project is to enable communities to better prepare for and navigate severe weather by providing better estimates of what is actually happening or might happen within the next hours or days,” Padgett, Rice’s Stanley C. Moore Professor in Engineering and chair of the Department of Civil and Environmental Engineering, says in the release. “OpenSafe.AI will take into account multiple hazards such as high-speed winds, storm surge and compound flooding and forecast their potential impact on the built environment such as transportation infrastructure performance or hazardous material spills triggered by severe storms.”

OpenSafe.AI platform will be developed to support decision makers before, during, and after a storm.

“By combining cutting-edge AI with a deep understanding of the needs of emergency responders, we aim to provide accurate, real-time information that will enable better decision-making in the face of disasters,” adds Hu, associate professor of computer science at Rice.

In the long term, OpenSafe.AI hopes to explore how the system can be applied to and scaled in other regions in need of equitable resilience to climate-driven hazards.

“Our goal is not only to develop a powerful tool for emergency response agencies along the coast but to ensure that all communities ⎯ especially the ones most vulnerable to storm-induced damage ⎯ can rely on this technology to better respond to and recover from the devastating effects of coastal storms,” adds Gori, assistant professor of civil and environmental engineering at Rice.

Two Houston communities have received funding for programming and workforce development within climate resilience. Photo via Getty Images

Houston Health Department scores $20M grant funding for climate, energy resilience

H-town strong

The city of Houston has secured a $20 million grant from the Environmental Protection Agency to be used to build climate and energy resilience in two local underserved communities.

The Houston Health Department's funding comes from the EPA's Community Change program and will benefit the Greater Fifth Ward and Kashmere Gardens, regions that have faced contamination from the neighboring Union Pacific Railroad site. This grant follows two prior EPA grants from the Vulnerable to Vibrant series that were awarded in 2023.

"Through this grant, we will also aim to enhance a state-of-the-art flood alert system that provides advance warning," Loren Hopkins, HHD's chief environmental science officer, says in a news release. "We will promote and provide education regarding an air permit application warning system, plant fruit trees for flood, heat, and pollution mitigation, develop a hyper-local neighborhood resilience plan, and establish a Houston Environmental Justice Advisory Committee."

The initial $1 million grant will span three years and includes several local partners: HHD, Black United Fund of Texas, Houston Community College, My Brother's Keeper - Houston, City of Houston Solid Waste Management Department, and Environmental Defense Fund. It will fund the creation of free solar workforce development program with the hopes of installing and operating a community solar farm.

A second $500,000 grant will find paid internships to residents for solar deployment in the community and will be led by HHD in partnership with BUFTX, University of Houston Center for Sustainability and Resilience, Air Alliance, Houston Wilderness, and Rice University SSPEED Center/Fang Research Group.

The ultimate goal of these freshly funded initiatives, according to the city, is to strengthen HHD and its partners' efforts in establishing a solar energy system for the community in order to advance the neighborhood’s resilience.

Both projects will seek to develop “tracking and evaluation systems for the emerging nature-based carbon credit market.” Photo via Getty Images

Houston researchers launch 2 nature-based carbon credit projects

seeing green

A team at Rice University has announced plans for two research projects that will focus on nature-based carbon credits.

The George R. Brown School of Engineering and the Severe Storm Prediction, Education and Evacuation from Disasters (SSPEED) Center reported that the projects will be funded through a gift from Emissions Reduction Corp. with the goal of advancing global decarbonization through a series of carbon sequestration, avoidance and reduction projects.

Both projects will seek to develop “tracking and evaluation systems for the emerging nature-based carbon credit market” according to a news release.

“The Rice School of Engineering is very interested in research into nature-based engineering solutions,” Luay Nakhleh, the William and Stephanie Sick Dean of Engineering and a professor of computer science and biosciences at Rice, says in the release. “For too long, we have used nature as a platform but not as a partner. This research will hopefully open the door on a new era of nature-based engineering. Moreover, this is a very timely initiative as bringing science to bear on the emergent carbon credit economy is of critical importance to meeting the challenges of a changing climate.”

For the first project, which is expected to take six months, the SSPEED Center will be commissioning the design of a digital monitoring, reporting and verification (dMRV) system for tracking nature-based carbon credits using satellite and drone imagery to monitor coastal blue carbon projects, soil, and forest projects.

The direct input of this data into blockchain and other record-keeping technologies will be the main part of the system. .A Houston-based local nonprofit carbon registry BC Carbon, and blockchain provider Change Code will also take part in the research.

The second project will see the SSPEED Center undertake hydrologic computer modeling, and take 12 to 18 months to complete. This will help determine the effectiveness of restoring native prairie grasslands as a flood control technique where a portion of the Brazos River will be modeled relative to predict increases in the frequency of “100-year floods” via climate change. Overall, it will evaluate whether prairie restoration funded via soil carbon credits could mitigate flooding risk, which could eliminate the need to raise the 30 miles of levees in Fort Bend County downstream of the carbon project. The George Foundation,BCarbon, and Fort Bend County Flood Control District will work together on this project.

“Using nature to solve flooding problems has been discussed but seldom executed at the level of a major river system,” Herman Brown Professor of Engineering and SSPEED Center director at Rice Phillip Bedient adds. “We are excited that carbon credits and prairie restoration might break open this nature-based flood engineering area.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based ENGIE to add new wind and solar projects to Texas grid

coming soon

Houston-based ENGIE North America Inc. has expanded its partnership with Los Angeles-based Ares Infrastructure Opportunities to add 730 megawatts of renewable energy projects to the ERCOT grid.

The new projects will include one wind and two solar projects in Texas.

“The continued growth of our relationship with Ares reflects the strength of ENGIE’s portfolio of assets and our track record of delivering, operating and financing growth in the U.S. despite challenging circumstances,” Dave Carroll, CEO and Chief Renewables Officer of ENGIE North America, said in a news release. “The addition of another 730 MW of generation to our existing relationship reflects the commitment both ENGIE and Ares have to meeting growing demand for power in the U.S. and our willingness to invest in meeting those needs.”

ENGIE has more than 11 gigawatts of renewable energy projects in operation or under construction in the U.S. and Canada, and 52.7 gigawatts worldwide. The company is targeting 95 gigawatts by 2030.

ENGIE launched three new community solar farms in Illinois since December, including the 2.5-megawatt Harmony community solar farm in Lena and the Knox 2A and Knox 2B projects in Galesburg.

The company's 600-megawatt Swenson Ranch Solar project near Abilene, Texas, is expected to go online in 2027 and will provide power for Meta, the parent company of social media platform Facebook. Late last year, ENGIE also signed a nine-year renewable energy supply agreement with AstraZeneca to support the pharmaceutical company’s manufacturing operations from its 114-megawatt Tyson Nick Solar Project in Lamar County, Texas.

Houston geothermal company raises $97M Series B

fresh funding

Houston-based geothermal energy startup Sage Geosystems has closed its Series B fundraising round and plans to use the money to launch its first commercial next-generation geothermal power generation facility.

Ormat Technologies and Carbon Direct Capital co-led the $97 million round, according to a press release from Sage. Existing investors Exa, Nabors, alfa8, Arch Meredith, Abilene Partners, Cubit Capital and Ignis H2 Energy also participated, as well as new investors SiteGround Capital and The UC Berkeley Foundation’s Climate Solutions Fund.

The new geothermal power generation facility will be located at one of Ormat Technologies' existing power plants. The Nevada-based company has geothermal power projects in the U.S. and numerous other countries around the world. The facility will use Sage’s proprietary pressure geothermal technology, which extracts geothermal heat energy from hot dry rock, an abundant geothermal resource.

“Pressure geothermal is designed to be commercial, scalable and deployable almost anywhere,” Cindy Taff, CEO of Sage Geosystems, said in the news release. “This Series B allows us to prove that at commercial scale, reflecting strong conviction from partners who understand both the urgency of energy demand and the criticality of firm power.”

Sage reports that partnering with the Ormat facility will allow it to market and scale up its pressure geothermal technology at a faster rate.

“This investment builds on the strong foundation we’ve established through our commercial agreement and reinforces Ormat’s commitment to accelerating geothermal development,” Doron Blachar, CEO of Ormat Technologies, added in the release. “Sage’s technical expertise and innovative approach are well aligned with Ormat’s strategy to move faster from concept to commercialization. We’re pleased to take this natural next step in a partnership we believe strongly in.”

In 2024, Sage agreed to deliver up to 150 megawatts of new geothermal baseload power to Meta, the parent company of Facebook. At the time, the companies reported that the project's first phase would aim to be operating in 2027.

The company also raised a $17 million Series A, led by Chesapeake Energy Corp., in 2024.

Houston expert discusses the clean energy founder's paradox

Guest Column

Everyone tells you to move fast and break things. In clean energy, moving fast without structural integrity means breaking the only planet we’ve got. This is the founder's paradox: you are building a company in an industry where the stakes are existential, the timelines are glacial, and the capital requires patience.

The myth of the lone genius in a garage doesn’t really apply here. Clean energy startups aren’t just fighting competitors. They are fighting physics, policy, and decades of existing infrastructure. This isn’t an app. You’re building something physical that has to work in the real world. It has to be cheaper, more reliable, and clearly better than fossil fuels. Being “green” alone isn’t enough. Scale is what matters.

Your biggest risks aren’t competitors. They’re interconnection delays, permitting timelines, supply chain fragility, and whether your first customer is willing to underwrite something that hasn’t been done before.

That reality creates a brutal filter. Successful founders in this space need deep technical knowledge and the ability to execute. You need to understand engineering, navigate regulation, and think in terms of markets and risk. You’re not just selling a product. You’re selling a future where your solution becomes the obvious choice. That means connecting short-term financial returns with long-term system change.

The capital is there, but it’s smarter and more demanding. Investors today have PhDs in electrochemistry and grid dynamics. They’ve been burned by promises of miracle materials that never left the lab. They don't fund visions; they fund pathways to impact that can scale and make financial sense. Your roadmap must show not just a brilliant invention, but a clear, believable plan to drive costs down over time.

Capital in this sector isn’t impressed by ambition alone. It wants evidence that risk is being retired in the right order — even if that means slower growth early.

Here’s the upside. The difficulty of clean energy is also its strength. If you succeed, your advantage isn’t just in software or branding. It’s in hardware, supply chains, approvals, and years of hard work that others can’t easily copy. Your real competitors aren’t other startups. They’re inertia and the existing system. Winning here isn’t zero-sum. When one solution scales, it helps the entire market grow.

So, to the founder in the lab, or running field tests at a remote site: your pace will feel slow. The validation cycles are long. But you are building in the physical world. When you succeed, you don’t have an exit. You have a foundation. You don't just have customers; you have converts. And the product you ship doesn't just generate revenue; it creates a legacy.

If your timelines feel uncomfortable compared to software, that’s because you’re operating inside a system designed to resist change. And let’s not forget you are building actual physical products that interact with a complex world. Times are tough. Don’t give up. We need you.

---

Nada Ahmed is the founding partner at Houston-based Energy Tech Nexus.