Both projects will seek to develop “tracking and evaluation systems for the emerging nature-based carbon credit market.” Photo via Getty Images

A team at Rice University has announced plans for two research projects that will focus on nature-based carbon credits.

The George R. Brown School of Engineering and the Severe Storm Prediction, Education and Evacuation from Disasters (SSPEED) Center reported that the projects will be funded through a gift from Emissions Reduction Corp. with the goal of advancing global decarbonization through a series of carbon sequestration, avoidance and reduction projects.

Both projects will seek to develop “tracking and evaluation systems for the emerging nature-based carbon credit market” according to a news release.

“The Rice School of Engineering is very interested in research into nature-based engineering solutions,” Luay Nakhleh, the William and Stephanie Sick Dean of Engineering and a professor of computer science and biosciences at Rice, says in the release. “For too long, we have used nature as a platform but not as a partner. This research will hopefully open the door on a new era of nature-based engineering. Moreover, this is a very timely initiative as bringing science to bear on the emergent carbon credit economy is of critical importance to meeting the challenges of a changing climate.”

For the first project, which is expected to take six months, the SSPEED Center will be commissioning the design of a digital monitoring, reporting and verification (dMRV) system for tracking nature-based carbon credits using satellite and drone imagery to monitor coastal blue carbon projects, soil, and forest projects.

The direct input of this data into blockchain and other record-keeping technologies will be the main part of the system. .A Houston-based local nonprofit carbon registry BC Carbon, and blockchain provider Change Code will also take part in the research.

The second project will see the SSPEED Center undertake hydrologic computer modeling, and take 12 to 18 months to complete. This will help determine the effectiveness of restoring native prairie grasslands as a flood control technique where a portion of the Brazos River will be modeled relative to predict increases in the frequency of “100-year floods” via climate change. Overall, it will evaluate whether prairie restoration funded via soil carbon credits could mitigate flooding risk, which could eliminate the need to raise the 30 miles of levees in Fort Bend County downstream of the carbon project. The George Foundation,BCarbon, and Fort Bend County Flood Control District will work together on this project.

“Using nature to solve flooding problems has been discussed but seldom executed at the level of a major river system,” Herman Brown Professor of Engineering and SSPEED Center director at Rice Phillip Bedient adds. “We are excited that carbon credits and prairie restoration might break open this nature-based flood engineering area.”

The 250,000-square-foot building is the new home for four key research areas at Rice: advanced materials, quantum science and computing, urban research and innovation, and the energy transition. Photo courtesy of Rice

Rice University opens new facility to house energy transition research

moving in

As the academic year officially kicks off, professors have started moving in and Rice University has opened its largest core campus research facility, The Ralph S. O’Connor Building for Engineering and Science.

The 250,000-square-foot building is the new home for four key research areas at Rice: advanced materials, quantum science and computing, urban research and innovation, and the energy transition. The university aims for the space to foster collaboration and innovation between the disciplines.

"To me it really speaks to where Rice wants to go as we grow our research endeavors on campus," Michael Wong, Chair of the Department of Chemical and Biomolecular Engineering, whose lab is located in the new facility, said in a video from Rice. "It has to be a mix of engineering and science to do great things. We don’t want to do good things, we want to do great things. And this building will allow us to do that."

At $152 million, the state-of-the-art facility features five floors of labs, classrooms and seminar rooms. Common spaces and a cafe encourage communication between departments, and the top level is home to a reception suite and outdoor terrace with views of the Houston skyline.

It replaces 1940s-era Abercrombie Engineering Laboratory on campus, which was demolished in 2021 to make way for the new facilities. The iconic sculpture "Energy" by Rice alumnus William McVey that was part of the original building was preserved with plans to incorporate it into the new space.

The new building will be dedicated to its namesake Ralph O'Connor on Sept. 14 in Rice's engineering quad at 3 p.m. O'Connor, a Johns Hopkins University grad, became a fan Rice when he moved to Houston to work in the energy industry in the 1950s.

The former president and CEO of the Highland Oil Company and founder of Ralph S. O’Connor & Associates left the university $57 million from his estate after he died in 2018. The gift was the largest donation from an estate in Rice's history and brought his donations to the university, including those to many buildings on campus and endowments and scholarships, to a total of $85 million.

“How fitting that this building will be named after Ralph O’Connor,” Rice President Reginald DesRoches said in a statement last summer. “He was a man who always looked to the future, and the future is what this new engineering and science building is all about. Discoveries made within those walls could transform the world. Anybody who knew Ralph O’Connor knows he would have loved that.”

The dedication event will be open to the public. It will feature remarks from DesRoches, as well as Rice Provost Amy Dittmar, Dean of the Wiess School of Natural Sciences Thomas Killian, Chair of the Rice Board of Trustees Robert Ladd and Dean of the George R. Brown School of Engineering Luay Nakhleh. A reception and tours of the new building will follow.

___

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

CERAWeek announces winners of annual clean tech pitch competition

top teams

Teams from around the world and right here in Houston took home prizes at the fourth annual Energy Venture Day and Pitch Competition at CERAWeek on March 12.

The fast-paced event, put on by Rice Alliance, Houston Energy Transition Initiative and TEX-E, invited 36 industry startups and five Texas-based student teams focused on driving efficiency and advancements toward the energy transition to present at 3.5-minute pitch before investors and industry partners during CERAWeek's Agora program. The competition is a qualifying event for the Startup World Cup, powered by Pegasus Venture, where teams compete for a $1 million investment prize.

The teams at this year's Energy Venture Day have collectively raised $435 million in funding.

Rice University student teams took home two of the three top prizes in the competition.

HEXASpec won the student track, known at TEX-E, taking home $25,000. The team's pitch focused on enhancing semiconductor chips’ thermal conductivity to boost computing power. Pattern Materials, another Rice-led team, claimed third place and won $10,000 for its proprietary LIG and LIGF technology that produces graphene patterns.

A team from the University of Texas McCombs School of Business, Nanoborne, took home second place and $15,000 for its engineering company focused on research and development in applied nanotechnology.

The companies that pitched in the three industry tracts competed for non-monetary awards. Here's who won:

Track A: Hydrogen, Fuel Cells, Buildings, Water, & Other Energy Solutions

Track B: Advanced Manufacturing, Materials, Fossil Energy, & Carbon Management

Track C: Industrial Efficiency, Decarbonization, Electricity, & the Grid

Arculus Solutions, which retrofits natural gas pipelines for safe hydrogen transportation, was named the overall winner and will move on to the Startup World Cup competition. California-based Membravo was also given a "golden ticket" to participate in the next NOV Supernova Accelerator cohort.

Teams at this year's Energy Venture Day represented five countries and 15 states. Click here to see the full list of companies and investor groups that participated.

Baker Hughes launches major clean energy initiatives with U.S. military and more

clean team

Energy tech company Baker Hughes announced two major clean energy initiatives this month.

The Houston-based company has teamed up with Dallas-based Frontier Infrastructure to develop carbon capture and storage (CCS), power generation and data center operations in the U.S.

Baker Hughes will supply technology for Frontier’s nearly 100,000-acre CCS hub in Wyoming, which will provide open-access CO2 storage for manufacturers and ethanol producers, as well as future Frontier projects. Frontier has already begun drilling activities at the Wyoming site.

“Baker Hughes is committed to delivering innovative solutions that support increasing energy demand, in part driven by the rapid adoption of AI, while ensuring we continue to enable the decarbonization of the industry,” says Lorenzo Simonelli, chairman and CEO of Baker Hughes.

Additionally, Baker Hughes announced this week that it was selected by the U.S. Air Force and the Department of Defense’s Chief Digital and Artificial Intelligence Office (CDAO) to develop utility-scale geothermal power plants that would power global U.S. military bases.

Baker Hughes was granted an "awardable," or eligible, status through the CDAO's Tradewinds Solutions Marketplace, which aims to accelerate "mission-critical technologies," including AI, machine learning and resilient energy technologies. The potential geothermal plants would provide cost-effective electricity, even during a grid outage.

“The ability of geothermal to provide reliable, secure baseload power makes it an ideal addition to America’s energy mix,” Ajit Menon, vice president of geothermal, oilfield services and equipment at Baker Hughes, said in a news release. “Baker Hughes has been a pioneer in this field for more than 40 years and our unique subsurface-to-surface expertise and advanced technology across the geothermal value chain will help the U.S. military unlock this critical domestic energy source, while simultaneously driving economic growth and energy independence.”