MONEY + MATTER

Green banking meets evergreen R&D with recent MOU

The convergence of green banking with evergreen experimentation in support of a growing green economy sounds like just the right shade of green. Photo by micheile henderson/Unsplash

The term “Energy Transition” doesn’t merely imply change, it demands it. And with change comes another kind of change–usually of the dollars and cents kind.

While many aspire to embrace more sustainable and cleaner energy solutions in their communities, the affluence needed to deploy necessary infrastructure often sits just outside of reach. Until now, that is.

With the rise of “green banking,” securing financing for the adoption of energy efficiency, implementation of decarbonization technologies, and broader provision of renewable energy is now more accessible. Funds at green banks, backed by a blend of public and philanthropic contributions, tap into the modern trend of crowdfunding to support egalitarian and climate improvement efforts.

However, green bank financing is structured with repayment of–or a return on–capital expected at the end of the term, meaning approval tends only to be granted to proven and established projects well past the research and development stage. Given the Energy Transition is, for the most part, still in its infancy, clearing such hurdles can be difficult.

But Houston is full of dreamers and doers; researchers and entrepreneurs eager to tackle the next big challenge. It would come as no surprise then, that Texas’ first green bank, the Clean Energy Fund of Texas (“CEFTx”), bucks tradition with a novel Memorandum Of Understanding (“MOU”) co-signed by the Houston Advanced Research Center (“HARC”) to finance efforts staunchly entrenched in R&D activity.

As the Energy Transition foothold grows, Houstonians are compelled not just to invest in green initiatives, but to drive them. Which only makes sense, considering the deep expertise in energy innovation led most recently by the Houston-area shale revolutionaries from Mitchell Energy. Established over 40 years ago by George P. Mitchell himself, HARC plants the seeds of transformation at the intersection of science, resilience, sustainability, and the environment.

Per the March 29 news release from CEFTx, John Hall, President & CEO of HARC says, “We are excited to join forces with the team at Clean Energy Fund of Texas as they drive green investment in low-income and disadvantaged communities. Our research expertise and experience in managing state and federal grants will be a true benefit to Texans.”

The recent MOU brings Energy Transition visionaries the capital necessary to explore, test, develop, and deploy innovative solutions from conception to maturity. Entrepreneurs at all stages of the business lifecycle are encouraged to apply for funding on the CEFTx website or connect with HARC at an upcoming event to discover how the two entities can take ideas from dream to reality.

“It’s an honor to work with the esteemed researchers at HARC, who have been studying sustainability for decades,” says Stephen Brown of CEFTx in the release. “Together we can be even more effective at kickstarting investments in solar power, retrofits, and other technologies that help create the green workforce of tomorrow.”

The fresh approach to funding set up by CEFTx and HARC positions new companies to succeed and enables existing companies to progress in the transition to a more sustainable #futureofenergy. It’s just the sort of sense that is needed to truly drive change.

Trending News

A View From HETI

A View From UH

A Rice University professor studied the Earth's carbon cycle in the Rio Madre de Dios to shed light on current climate conditions. Photo courtesy of Mark Torres/Rice University

Carbon cycles through Earth, its inhabitants, and its atmosphere on a regular basis, but not much research has been done on that process and qualifying it — until now.

In a recent study of a river system extending from the Peruvian Andes to the Amazon floodplains, Rice University’s Mark Torres and collaborators from five institutions proved that that high rates of carbon breakdown persist from mountaintop to floodplain.

“The purpose of this research was to quantify the rate at which Earth naturally releases carbon dioxide into the atmosphere and find out whether this process varies across different geographic locations,” Torres says in a news release.

Torres published his findings in a study published in PNAS, explaining how they used rhenium — a silvery-gray, heavy transition metal — as a proxy for carbon. The research into the Earth’s natural, pre-anthropogenic carbon cycle stands to benefit humanity by providing valuable insight to current climate challenges.

“This research used a newly-developed technique pioneered by Robert Hilton and Mathieu Dellinger that relies on a trace element — rhenium — that’s incorporated in fossil organic matter,” Torres says. “As plankton die and sink to the bottom of the ocean, that dead carbon becomes chemically reactive in a way that adds rhenium to it.”

The research was done in the Rio Madre de Dios basin and supported by funding from a European Research Council Starting Grant, the European Union COFUND/Durham Junior Research Fellowship, and the National Science Foundation.

“I’m very excited about this tool,” Torres said. “Rice students have deployed this same method in our lab here, so now we can make this kind of measurement and apply it at other sites. In fact, as part of current research funded by the National Science Foundation, we are applying this technique in Southern California to learn how tectonics and climate influence the breakdown of fossil carbon.”

Torres also received a three-year grant from the Department of Energy to study soil for carbon storage earlier this year.

Trending News