MONEY + MATTER

Green banking meets evergreen R&D with recent MOU

The convergence of green banking with evergreen experimentation in support of a growing green economy sounds like just the right shade of green. Photo by micheile henderson/Unsplash

The term “Energy Transition” doesn’t merely imply change, it demands it. And with change comes another kind of change–usually of the dollars and cents kind.

While many aspire to embrace more sustainable and cleaner energy solutions in their communities, the affluence needed to deploy necessary infrastructure often sits just outside of reach. Until now, that is.

With the rise of “green banking,” securing financing for the adoption of energy efficiency, implementation of decarbonization technologies, and broader provision of renewable energy is now more accessible. Funds at green banks, backed by a blend of public and philanthropic contributions, tap into the modern trend of crowdfunding to support egalitarian and climate improvement efforts.

However, green bank financing is structured with repayment of–or a return on–capital expected at the end of the term, meaning approval tends only to be granted to proven and established projects well past the research and development stage. Given the Energy Transition is, for the most part, still in its infancy, clearing such hurdles can be difficult.

But Houston is full of dreamers and doers; researchers and entrepreneurs eager to tackle the next big challenge. It would come as no surprise then, that Texas’ first green bank, the Clean Energy Fund of Texas (“CEFTx”), bucks tradition with a novel Memorandum Of Understanding (“MOU”) co-signed by the Houston Advanced Research Center (“HARC”) to finance efforts staunchly entrenched in R&D activity.

As the Energy Transition foothold grows, Houstonians are compelled not just to invest in green initiatives, but to drive them. Which only makes sense, considering the deep expertise in energy innovation led most recently by the Houston-area shale revolutionaries from Mitchell Energy. Established over 40 years ago by George P. Mitchell himself, HARC plants the seeds of transformation at the intersection of science, resilience, sustainability, and the environment.

Per the March 29 news release from CEFTx, John Hall, President & CEO of HARC says, “We are excited to join forces with the team at Clean Energy Fund of Texas as they drive green investment in low-income and disadvantaged communities. Our research expertise and experience in managing state and federal grants will be a true benefit to Texans.”

The recent MOU brings Energy Transition visionaries the capital necessary to explore, test, develop, and deploy innovative solutions from conception to maturity. Entrepreneurs at all stages of the business lifecycle are encouraged to apply for funding on the CEFTx website or connect with HARC at an upcoming event to discover how the two entities can take ideas from dream to reality.

“It’s an honor to work with the esteemed researchers at HARC, who have been studying sustainability for decades,” says Stephen Brown of CEFTx in the release. “Together we can be even more effective at kickstarting investments in solar power, retrofits, and other technologies that help create the green workforce of tomorrow.”

The fresh approach to funding set up by CEFTx and HARC positions new companies to succeed and enables existing companies to progress in the transition to a more sustainable #futureofenergy. It’s just the sort of sense that is needed to truly drive change.

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News