Investors in Houston and across Texas are proving to be transformational partners to finance and grow energy hardware startups. Photo via Getty Images

Texas is a national leader in wind and solar, generating more energy in these categories than any other state since 2006 and double that of next placed California. As investment in renewable energy continues to skyrocket, the limitations of the 19th-century grid prevent the industry from realizing the benefits of this 21st-century technology.

For years, Texas has grappled with insufficient infrastructure for its current mix of energy sources, which includes surging renewables. The Alternating Current (AC) grid — the standard since the 1800s — requires matching supply and demand in real-time to maintain a stable frequency, which is complex and costly, especially with renewable energy when the sun doesn’t always shine and the wind doesn’t always blow.

Startup firms are busy developing technologies to solve this issue. For example, it’s possible to modernize the AC grid to control the voltage of the distribution network precisely, to ensure fast adjustments to demand, and to adapt to changes in supply from renewables. Enoda, a U.K.-based scale-up, is an example of an innovative company developing and delivering technology to enable the AC grid to accommodate much higher levels of renewable energy and electrification.

Equally important to these technical innovations are innovations in financing for energy startups. On two levels, investors in Houston and across Texas are proving to be transformational partners to finance and grow energy hardware startups.

1. Innovative Funding Structures

Because of the long timelines, hardware investing requires, in part, more patient capital than the typical Silicon Valley venture capital model prevalent in startup investments. Their playbook is best suited for software companies that develop new features in weeks or months. Energy hardware startups require a longer timeline because of the far greater complexity and upfront capital outlay.

Texas investment firms and family offices are, however, accustomed to investing in complex energy projects with longer development timelines. This complexity presents a high barrier to entry for competitors, which significantly increases the upside potential that risk-capital investors seek should the innovation find market traction. At the same time, up-front capital requirements have decreased considerably, making hardware more appealing to investors.

2. Visionary partnership

Attracting investors and demonstrating early-stage traction differs for hardware companies because of the lengthy pre-revenue R&D process. Software innovators can launch with a minimum viable product, gain a few early customers, and then grow incrementally. By contrast, energy hardware technology must be fully developed from launch. Each Enoda PRIME exchanger, from the first unit sold, represents a piece of critical infrastructure on which households will rely for their electricity supply for its 30-year lifespan. For venture investors who focus on software, it’s easy to assess the health of a software company based on well-established metrics related to customer growth and the cost of customer acquisition.

Hardware investing requires investors to have a much deeper understanding of the problem being solved and assess the quality of the solution objectively rather than rely on early customers for a minimum viable product. Texas investors have been quick to understand the problems that the energy industry must solve around energy balancing and keeping the frequency of a system stable in order to grow renewable energy. Why the keen insight? Because that problem is being solved today by gas power plants. A visionary investor with many years of deep industry perspective is far more likely to appreciate that than a VC firm looking across many industries based on a standard set of metrics.

Visionary partnership is precisely what energy startups need because it’s important not to evaluate the company as it is today but what it will be in five years. Hardware startups need visionary investor partners who understand the importance of parallel pathing fundamental innovation, product development and delivery, and customer development to grow and succeed. Hardware startups succeed only when they can do these things simultaneously—and require investors who can imagine a possible future and understand the path to reach it.

Changing the way investment works

Many energy startups are worthy inheritors of Houston’s bold entrepreneurial spirit that led to technological innovations like deep-sea drilling and hydraulic fracturing. They will continue to need equally bold investors who recognize the world of opportunities at their doorstep.

———

Paul Domjan is the founder and chief policy and global affairs officer at Enoda. Derek Jones and Paul Morico are partners at Baker Botts.

Accenture's Houston hub will introduce a new generative AI studio. Photo via Getty Images

Global corporation to open generative AI studio geared toward energy, chemicals industries in Houston

coming soon

Accenture has announced a new studio coming to Houston that will help its industrial clients with generative artificial intelligence.

The company announced that it will launch a network of studios across North America that will work with clients to explore generative AI applications in business. The initiative will support companies in navigating use cases, conducting AI pilots, and scaling programs. The studios will be in Accenture Innovation Hubs in Chicago, Houston, New York, San Francisco, Toronto and Washington, D.C.

“The studios are designed to help our clients move from interest to action to value, in a responsible way with clear business cases,” Manish Sharma, North America CEO of Accenture, says in the news release. “We are constantly refreshing our learnings from more than 3,000 client conversations on generative AI this year. We use these conversations as demand signals to understand the real-world challenges our clients face and invest in the areas of greatest need and opportunity.”

Each of the studios will have a specific industrial focus as well as broad support. Houston's location will specialize in Industry X, chemicals, energy and utilities industries. The other five markets, according to Accenture, are as follows:

  • Chicago will specialize in financial services, health, life sciences, consumer goods and services, Industry X and manufacturing.
  • New York will specialize in life sciences and financial services.
  • San Francisco will specialize in software and platforms and communications, media, and technology.
  • Toronto will specialize in financial services, retail, health, and public service.
  • Washington, D.C. will specialize in health, public service, including federal government services.

The initiative is a part of Accenture’s $3 billion investment in data and AI, and each of the studios will leverage Accenture’s top data and AI experts and partners, including expertise from within Accenture's Center for Advanced AI. Resource access also includes more than 1,450 patents and patent applications in AI solutions, as well as learnings from more than 300 active generative AI projects the company has worked on.

“Clients are ready to move beyond generative AI experimentation. They want to harness generative AI at scale to fundamentally reinvent their business,” Sharma adds. “Clients will come to the studios to access the latest innovations, experiment with new technologies, tools, and approaches to advance their skills, and develop roadmaps to adopt generative AI at scale.”

Asking ChatGPT what all was made from petroleum produced surprising results - the answer: everything. Photo by Sanket Mishra/Unsplash

Energy truly IS everywhere according to ChatGPT

EVERYDAY ENERGY

I sat down to have a conversation with ChatGPT from OpenAI about energy by-products; specifically, everyday items we use that contain some form of petrochemicals. My first prompt was rather broad, so I wasn’t surprised to get back a rather broad answer highlighting product categories instead of specific examples. Plastics, synthetic fibers, cleaning products, personal care products, medicines, paints & coatings, and adhesives were all succinctly summarized, but I wanted to dive deeper.

Given that AI has an almost limitless reach, I asked for a comprehensive list of all the products we use in everyday life that are made from petrochemicals. Turns out, ChatGPT has some healthy boundaries, so it pushed back, only offering a slightly more detailed list of the categories produced from the first prompt.

Not to be deterred, I asked for additional examples. I didn’t want to continue getting spoon-fed 10 items at a time, so I asked for 200. Less than comprehensive, more than the crumbs I was getting.

In entertaining fashion, ChatGPT told me compiling a list of 200 items might be challenging, but that it could offer up 100. The brazen negotiation made me smile.

I complimented the list and nudged a bit, encouraging ChatGPT it could come up with another 100 items if it tried. Much like a teenager wishes to stave off further questioning from a nosy parent, ChatGPT proffered up a second response of 100 items–almost half of which were simply things before which it added the qualifier “synthetic.” Salty.

As my intention is not to bore you, but rather enhance the knowledge of our readers by understanding how pervasive petrochemical products are in our everyday life, I settled on a more direct inquiry with a capped demand prompt: “What would you say are the 10 most surprising things in common everyday use that contain petrochemical products?”

Most of the answers featured wax-based products, like lotions, crayons, and lipstick–not necessarily earth-shattering realizations given my familiarity with cosmetics as petroleum by-products. I was pleasantly surprised to learn that chewing gum, with its synthetic rubber base enabling theoretically endless chewing, is derived from petroleum. I was also surprised to learn that many artificial sweeteners, like saccharin and aspartame, are made from petrochemicals. Huh.

There was one item on the list, however, that helped me see how truly pervasive the energy industry is, and not just for petrochemicals. Tucked in nonchalantly at #6 was Deodorant. My brain jumped immediately to the waxy base of a solid sweat deterrent, but my eyes got a curveball. ChatGPT writes, “Many deodorants contain aluminum, which is often derived from bauxite, a mineral that is usually mined from the earth using petroleum-powered machinery.” Now that was an answer I wasn’t expecting.

While my initial inference stood true – the smooth glide of a buttery solid antiperspirant is without a doubt derived from petrochemicals (not to mention the plastic packaging surrounding it), I wasn’t expecting ChatGPT to rope in the oft petroleum-fueled tools used to make said product. If that’s true, then nearly every item on the planet is derived from petroleum. Or at the very least, some source of energy. Regardless of whether the machinery used runs on gasoline, electricity, or wind power, literally almost everything that is produced on this earth is related to the energy industry.

Even if it’s hand-made, it’s technically still energy-adjacent, assuming we all bathe regularly with soap, yet another on the list of commonly used items derived from petroleum by-products. It’s certainly directly powering some manual activities, for those busting stress and bad breath with gum, or drinking a diet soda to power through. No pun intended.

I share this amusing tale simply to clarify the ubiquitous nature of energy in all parts of the modern world. As we look toward the #futureofenergy, we must be cognizant of its universal reach. It’s not necessarily realistic to switch from one source of energy to another overnight, but we do have a responsibility to seek cleaner, healthier, more efficient sources of energy while sustaining the life to which we have all grown accustomed.

Much like ChatGPT thought she couldn’t come up with 200 items derived from petroleum products, many think Houston will be unable to drive the Energy Transition, given our extensive petroleum focus. But like so many fellow Houstonians before us, we love a good challenge.

Just keep prompting us, and we’ll eventually unlock infinite potential for the #futureofenergy. It’s a limitless time to be in Houston, absorbing wisdom the city so willingly wants to share with the growing ecosystem of innovators. Just ask the growing number of almost 5,000 Energy-related firms in Houston. We’re just getting started.

------

Lindsey Ferrell is a contributing writer to EnergyCapitalHTX and founder of Guerrella & Co.

Rising temps could result in rolling brownouts this summer–unless we work together to reduce the strain on the electric grid. Photo via Shutterstock

NERC warns of summer energy shortfalls–what you can do now

THINGS ARE HEATING UP

The North American Electric Reliability Council (NERC) issued a warning with the 2023 Summer Reliability Assessment yesterday – energy shortages could be coming this summer for two-thirds of North America if temperatures spike higher than normal.

“Increased, rapid deployment of wind, solar and batteries have made a positive impact,” Mark Olson, NERC’s manager of reliability assessments says in the release. “However, generator retirements continue to increase the risks associated with extreme summer temperatures, which factors into potential supply shortages in the western two-thirds of North America if summer temperatures spike.”

For Texans, the combined risk of drought and higher-than-normal temperatures could stress ERCOT system resources, especially in the case of reduced wind. But before there’s a mad rush on generators, keep in mind, electricity consumers can take simple actions to minimize the possibility of widespread shortfalls.

Electricity demand begins rising daily around 2 P.M. in the summer and peaks in the final hours of daylight. These hours are generally not only the warmest hours of the day but also the busiest. People return from work to their homes, crank down the air conditioner, turn on TVs, run a load of wash, and prepare meals using multiple electric-powered appliances.

If everyone takes one or two small steps to avoid unnecessary stress on the grid in the hours after coming home from work, we can prevent energy shortfalls. Modify routines now to get into the habit of running the dishwasher overnight, using the washer and dryer before noon or after 8 pm and pulling the shades down in the bright afternoon hours of the day.

Try to delay powering up devices – including EVs – until after dark. Turn off and unplug items to avoid sapping electricity when items are not in use. And if you can bear it, nudge that thermostat up a couple of degrees.

Energy sustainability demands consistent collaboration and coordination from every consumer of energy. Let’s get in the habit of acting neighborly now with conservative electricity practices before we start seeing temperatures–of both the literal and figurative kind–flare.

The convergence of green banking with evergreen experimentation in support of a growing green economy sounds like just the right shade of green. Photo by micheile henderson/Unsplash

Green banking meets evergreen R&D with recent MOU

MONEY + MATTER

The term “Energy Transition” doesn’t merely imply change, it demands it. And with change comes another kind of change–usually of the dollars and cents kind.

While many aspire to embrace more sustainable and cleaner energy solutions in their communities, the affluence needed to deploy necessary infrastructure often sits just outside of reach. Until now, that is.

With the rise of “green banking,” securing financing for the adoption of energy efficiency, implementation of decarbonization technologies, and broader provision of renewable energy is now more accessible. Funds at green banks, backed by a blend of public and philanthropic contributions, tap into the modern trend of crowdfunding to support egalitarian and climate improvement efforts.

However, green bank financing is structured with repayment of–or a return on–capital expected at the end of the term, meaning approval tends only to be granted to proven and established projects well past the research and development stage. Given the Energy Transition is, for the most part, still in its infancy, clearing such hurdles can be difficult.

But Houston is full of dreamers and doers; researchers and entrepreneurs eager to tackle the next big challenge. It would come as no surprise then, that Texas’ first green bank, the Clean Energy Fund of Texas (“CEFTx”), bucks tradition with a novel Memorandum Of Understanding (“MOU”) co-signed by the Houston Advanced Research Center (“HARC”) to finance efforts staunchly entrenched in R&D activity.

As the Energy Transition foothold grows, Houstonians are compelled not just to invest in green initiatives, but to drive them. Which only makes sense, considering the deep expertise in energy innovation led most recently by the Houston-area shale revolutionaries from Mitchell Energy. Established over 40 years ago by George P. Mitchell himself, HARC plants the seeds of transformation at the intersection of science, resilience, sustainability, and the environment.

Per the March 29 news release from CEFTx, John Hall, President & CEO of HARC says, “We are excited to join forces with the team at Clean Energy Fund of Texas as they drive green investment in low-income and disadvantaged communities. Our research expertise and experience in managing state and federal grants will be a true benefit to Texans.”

The recent MOU brings Energy Transition visionaries the capital necessary to explore, test, develop, and deploy innovative solutions from conception to maturity. Entrepreneurs at all stages of the business lifecycle are encouraged to apply for funding on the CEFTx website or connect with HARC at an upcoming event to discover how the two entities can take ideas from dream to reality.

“It’s an honor to work with the esteemed researchers at HARC, who have been studying sustainability for decades,” says Stephen Brown of CEFTx in the release. “Together we can be even more effective at kickstarting investments in solar power, retrofits, and other technologies that help create the green workforce of tomorrow.”

The fresh approach to funding set up by CEFTx and HARC positions new companies to succeed and enables existing companies to progress in the transition to a more sustainable #futureofenergy. It’s just the sort of sense that is needed to truly drive change.

Nabors executive Subodh Saxena challenged leaders to think more like Generation Z at OTC2023. Photo courtesy of nabors.com

Drilling executive calls for a new course of action to achieve success

EMPOWERING TRANSITION

Gone are the days of people, process, and technology. Welcome to purpose, partnering, and governance.

In the early morning hours of the third day of OTC2023, Subodh Saxena, senior vice president at Nabors Industries, succinctly summarized both the challenges and opportunities faced by an industry in the middle of an identity crisis.

The upstream energy industry focused the better part of the last two decades on physical safety, division and clarity of responsibilities, and technology adoption and adaptation. Rightfully so, given the Macondo incident of 2010, the Enron collapse in 2002, and the general wildfire growth of technology in the workplace over the same time frame.

But as leadership that came of age during these tragedies takes the reigns, a new set of challenges arises. Consistent lack of positive financial returns, a shrinking talent pool, and of course, the climate crisis, combine to form the perfect storm for an industry just trying to manage the rising and falling tides of unstable commodity pricing.

To avoid completely capsizing during this squall in which the industry finds itself, Saxena describes three opportunities for improvement.

  • Attracting new talent by creating psychological safety in our workplaces and improving the perception of technology adaptation in the industry
  • Embracing a collaborative approach to building new solutions to limit the amount of siloed rework that currently stymies rapid advancement
  • Improved financial discipline with greater honesty about ROI for the entire supply chain

“We have a mindset in the industry, that we have to build everything ourselves," Saxena laments. "We have to learn to partner because [if] every company invests in new technology to create transition, whether that's hydrogen or any other source of green energy, that return on invested capital is going to become negative. We need to learn to collaborate to ensure that we are all going to be successful.”

The requests made by Saxena represent a growing movement within the incumbent industry to think not of the energy transition as a shift from one energy source to another but as a transition in mindset. Collaboration is the name of the game now, as are mindfulness, responsibility, and above all else, sustainability.

Revisiting purpose, partnering, and governance to identify room for improvement will ultimately determine whether organizations will sink or sail.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Mars Materials makes breakthrough in clean carbon fiber production

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

Tesla no longer world's biggest EV maker as sales drop for second year

EV Update

Tesla lost its crown as the world’s bestselling electric vehicle maker as a customer revolt over Elon Musk’s right-wing politics, expiring U.S. tax breaks for buyers and stiff overseas competition pushed sales down for a second year in a row.

Tesla said that it delivered 1.64 million vehicles in 2025, down 9% from a year earlier.

Chinese rival BYD, which sold 2.26 million vehicles last year, is now the biggest EV maker.

It's a stunning reversal for a car company whose rise once seemed unstoppable as it overtook traditional automakers with far more resources and helped make Musk the world's richest man. The sales drop came despite President Donald Trump's marketing effort early last year when he called a press conference to praise Musk as a “patriot” in front of Teslas lined up on the White House driveway, then announced he would be buying one, bucking presidential precedent to not endorse private company products.

For the fourth quarter, Tesla sales totaled 418,227, falling short of even the much reduced 440,000 target that analysts recently polled by FactSet had expected. Sales were hit hard by the expiration of a $7,500 tax credit for electric vehicle purchases that was phased out by the Trump administration at the end of September.

Tesla stock fell 2.6% to $438.07 on Friday.

Even with multiple issues buffeting the company, investors are betting that Tesla CEO Musk can deliver on his ambitions to make Tesla a leader in robotaxi services and get consumers to embrace humanoid robots that can perform basic tasks in homes and offices. Reflecting that optimism, the stock finished 2025 with a gain of approximately 11%.

The latest quarter was the first with sales of stripped-down versions of the Model Y and Model 3 that Musk unveiled in early October as part of an effort to revive sales. The new Model Y costs just under $40,000 while customers can buy the cheaper Model 3 for under $37,000. Those versions are expected to help Tesla compete with Chinese models in Europe and Asia.

For fourth-quarter earnings coming out in late January, analysts are expecting the company to post a 3% drop in sales and a nearly 40% drop in earnings per share, according to FactSet. Analysts expect the downward trend in sales and profits to eventually reverse itself as 2026 rolls along.

Musk said earlier last year that a “major rebound” in sales was underway, but investors were unruffled when that didn't pan out, choosing instead to focus on Musk's pivot to different parts of business. He has has been saying the future of the company lies with its driverless robotaxis service, its energy storage business and building robots for the home and factory — and much less with car sales.

Tesla started rolling out its robotaxi service in Austin in June, first with safety monitors in the cars to take over in case of trouble, then testing without them. The company hopes to roll out the service in several cities this year.

To do that successfully, it needs to take on rival Waymo, which has been operating autonomous taxis for years and has far more customers. It also will also have to contend with regulatory challenges. The company is under several federal safety investigations and other probes. In California, Tesla is at risk of temporarily losing its license to sell cars in the state after a judge there ruled it had misled customers about their safety.

“Regulatory is going to be a big issue,” said Wedbush Securities analyst Dan Ives, a well-known bull on the stock. “We're dealing with people's lives.”

Still, Ives said he expects Tesla's autonomous offerings will soon overcome any setbacks.

Musk has said he hopes software updates to his cars will enable hundreds of thousands of Tesla vehicles to operate autonomously with zero human intervention by the end of this year. The company is also planning to begin production of its AI-powered Cybercab with no steering wheel or pedals in 2026.

To keep Musk focused on the company, Tesla’s directors awarded Musk a potentially enormous new pay package that shareholders backed at the annual meeting in November.

Musk scored another huge windfall two weeks ago when the Delaware Supreme Court reversed a decision that deprived him of a $55 billion pay package that Tesla doled out in 2018.

Musk could become the world's first trillionaire later this year when he sells shares of his rocket company SpaceX to the public for the first time in what analysts expect would be a blockbuster initial public offering.

Renewables to play greater role in powering data centers, JLL says

Data analysis

Renewable energy is evolving as the primary energy source for large data centers, according to a new report.

The 2026 Global Data Center Outlook from commercial real estate services giant JLL points out that the pivot toward big data centers being powered by renewable energy stems from rising electricity costs and tightening carbon reduction requirements. In the data center sector, renewable energy, such as solar and wind power, is expected to outcompete fossil fuels on cost, the report says.

The JLL forecast carries implications for the Houston area’s tech and renewable energy sectors.

As of December, Texas was home to 413 data centers, second only to Virginia at 665, according to Visual Capitalist. Dozens more data centers are in the pipeline, with many of the new facilities slated for the Houston, Austin, Dallas-Fort Worth and San Antonio areas.

Amid Texas’ data center boom, several Houston companies are making inroads in the renewable energy market for data centers. For example, Houston-based low-carbon energy supplier ENGIE North America agreed last May to supply up to 300 megawatts of wind power for a Cipher Mining data center in West Texas.

The JLL report says power, not location or cost, will become the primary factor in selecting sites for data centers due to multi-year waits for grid connections.

“Energy infrastructure has emerged as the critical bottleneck constraining expansion [of data centers],” the report says. “Grid limitations now threaten to curtail growth trajectories, making behind-the-meter generation and integrated battery storage solutions essential pathways for sustainable scaling.”

Behind-the-meter generation refers to onsite energy systems such as microgrids, solar panels and solar battery storage. The report predicts global solar capacity will expand by roughly 100 gigawatts between 2026 and 2030 to more than 10,000 gigawatts.

“Solar will account for nearly half of global renewable energy capacity in 2026, and despite its intermittent properties, solar will remain a key source of sustainable energy for the data center sector for years to come,” the report says.

Thanks to cost and sustainability benefits, solar-plus-storage will become a key element of energy strategies for data centers by 2030, according to the report.

“While some of this energy harvesting will be colocated with data center facilities, much of the energy infrastructure will be installed offsite,” the report says.

Other findings of the report include:

  • AI could represent half of data center workloads by 2030, up from a quarter in 2025.
  • The current five-year “supercycle” of data center infrastructure development may result in global investments of up to $3 trillion by 2030.
  • Nearly 100 gigawatts worth of new data centers will be added between 2026 and 2030, doubling global capacity.

“We’re witnessing the most significant transformation in data center infrastructure since the original cloud migration,” says Matt Landek, who leads JLL’s data center division. “The sheer scale of demand is extraordinary.”

Hyperscalers, which operate massive data centers, are allocating $1 trillion for data center spending between 2024 and 2026, Landek notes, “while supply constraints and four-year grid connection delays are creating a perfect storm that’s fundamentally reshaping how we approach development, energy sourcing, and market strategy.”