The new "Arch of Time" in Houston’s East End will generate 400,000 kilowatt-hours of power annually. Photo courtesy Land Art Generator Initiative.

Local and state leaders shared updated plans this month on a first-of-its-kind structure that uses art to generate solar energy.

Slated to be located at Mason Park in Houston’s East End, the new "Arch of Time" is a freestanding sundial art installation that will generate 400,000 kilowatt-hours of power per year using 60,000 solar photovoltaic cells on its south-facing exterior.

The project will be part of a larger pavilion at the park and is being led by the renewable energy organization Land Art Generator Initiative (LAGI). Architect Riccardo Mariano will design the space. It will be funded by donations and cost $20 million, organizers say.

The project, originally known as "Arco del Tiempo," was announced in 2023. At the time, the city shared the installation would be installed at Guadalupe Plaza Park in 2024.

The project's latest update was announced during Houston City Hall’s Earth Day 2025, where organizers described it as "a monument to Houston's past, present, and future leadership as the energy capital of the world."

The 100-foot structure will also serve as a 25,000-square-foot shaded area, or microclimate, during hot days. It will also feature a stage performance space and a power hub for emergencies. Due to the artwork's north opening and south narrowing, it is also expected to help channel the breezes, according to LAGI.

The organization says it is also expected to generate enough power to fuel all of Mason Park.

“Mason Park will soon, perhaps become the first major park in the country that is powered entirely by the sun,” Houston City Council Member Joaquin Martinez said at the news conference. “The economic benefits are clear.”

Former Houston Park and Recreation director Joe Turner selected the East End park as the location of the arch and believes it could be used as a STEM tool for students.

“All the STEM education that can come from the way we use the solar collectors, the way it has a water collection system that's going to collect the runoff water, there's so much we can do to teach kids STEM,” said in a Houston Park and Recreation Department video.

The project is about two years away from being completed. LAGI says the Arch of Time will be the “first public art project of its scale to stand as a net-positive contribution to a sustainable climate.”

Chevron expects all of its corporate functions to shift to Houston over the next five years. Photo via Getty Images

Following years of speculation, Chevron announces HQ move to Houston

big news

The Energy Capital of the World is adding another jewel to its corporate crown.

With the impending move of Chevron’s headquarters from Northern California to Houston, the Houston area will be home to 24 Fortune 500 companies. Chevron ranks 15th on this year’s Fortune 500.

Oil and gas giant Chevron, currently based in San Ramon, California, will join three Fortune 500 competitors that already maintain headquarters in the Houston area:

  • Spring-based ExxonMobil, No. 7 on the Fortune 500
  • Houston-based Phillips 66, No. 26 on the Fortune 500
  • Houston-based ConocoPhillips, No. 68 on the Fortune 500

Chevron, which posted revenue of $200.9 billion in 2023, employs about 7,000 people in the Houston area and about 2,000 people in San Ramon. The company says its chairman and CEO, Mike Wirth, and vice chairman, Mark Nelson, will move to Houston before the end of 2024.

In an interview with The Wall Street Journal, Wirth acknowledged Chevron’s differences of opinion with California policymakers regarding energy matters.

“We believe California has a number of policies that raise costs, that hurt consumers, that discourage investment and ultimately we think that’s not good for the economy in California and for consumers,” Wirth said.

Chevron expects all of its corporate functions to shift to Houston over the next five years. Jobs that support the company’s California operations will remain in San Ramon, where Chevron employs about 2,000 people. Some Chevron employees in San Ramon will relocate to Houston.

The company’s move to Houston hardly comes as a surprise. Speculation about a relocation to Houston intensified after Chevron sold its 98-acre San Ramon headquarters in 2022 and moved corporate employees to leased office space. Over the past several years, Chevron has shifted various corporate functions to Houston.

“This is just the final step that many industry observers were waiting to happen,” Ken Medlock, senior director of the Baker Institute’s Center for Energy Studies at Rice University, says in a news release.

“To start, Houston provides a world-class location for internationally focused energy companies, which is why there is such a massive international presence here,” Medlock adds. “Texas is also the nation’s largest energy producer across multiple energy sources and is poised to lead in emerging opportunities such as hydrogen and carbon capture, so Houston is a great place for domestically focused activities as well.”

The announcement of Chevron’s exit from California comes just a year after ExxonMobil finalized its relocation from Irving to Spring.

“Chevron’s decision to relocate its headquarters underscores the compelling advantages that position Houston as the prime destination for leading energy companies today and for the future,” Steve Kean, president and CEO of the Greater Houston Partnership, says in a post on the organization’s website.

“With deep roots in our region,” he adds, “Chevron is [a] key player in establishing Houston as a global energy leader. This move will further enhance those efforts.”

Houston could have ranked higher on a global report of top cities in the world if it had a bit more business diversification. Photo via Getty Images

Houston's energy industry deemed both a strength and weakness on global cities report

mixed reviews

A new analysis positions the Energy Capital of the World as an economic dynamo, albeit a flawed one.

The recently released Oxford Economics Global Cities Index, which assesses the strengths and weaknesses of the world’s 1,000 largest cities, puts Houston at No. 25.

Houston ranks well for economics (No. 15) and human capital (No. 18), but ranks poorly for governance (No. 184), environment (No. 271), and quality of life (No. 298).

New York City appears at No. 1 on the index, followed by London; San Jose, California; Tokyo; and Paris. Dallas lands at No. 18 and Austin at No. 39.

In its Global Cities Index report, Oxford Economics says Houston’s status as “an international and vertically integrated hub for the oil and gas sector makes it an economic powerhouse. Most aspects of the industry — downstream, midstream, and upstream — are managed from here, including the major fuel refining and petrochemicals sectors.”

“And although the city has notable aerospace and logistics sectors and has diversified into other areas such as biomedical research and tech, its fortunes remain very much tied to oil and gas,” the report adds. “As such, its economic stability and growth lag other leading cities in the index.”

The report points out that Houston ranks highly in the human capital category thanks to the large number of corporate headquarters in the region. The Houston area is home to the headquarters of 26 Fortune 500 companies, including ExxonMobil, Hewlett Packard Enterprise, and Sysco.

Another contributor to Houston’s human capital ranking, the report says, is the presence of Rice University, the University of Houston and the Texas Medical Center.

“Despite this,” says the report, “it lacks the number of world-leading universities that other cities have, and only performs moderately in terms of the educational attainment of its residents.”

Slower-than-expected population growth and an aging population weaken Houston’s human capital score, the report says.

Meanwhile, Houston’s score for quality is life is hurt by a high level of income inequality, along with a low life expectancy compared with nearly half the 1,000 cities on the list, says the report.

Also in the quality-of-life bucket, the report underscores the region’s variety of arts, cultural, and recreational activities. But that’s offset by urban sprawl, traffic congestion, an underdeveloped public transportation system, decreased air quality, and high carbon emissions.

Furthermore, the report downgrades Houston’s environmental stature due to the risks of hurricanes and flooding.

“Undoubtedly, Houston is a leading business [center] that plays a key role in supporting the U.S. economy,” says the report, “but given its shortcomings in other categories, it will need to follow the path of some of its more well-rounded peers in order to move up in the rankings.”

———

This article originally ran on InnovationMap.

Houston is in the running to receive millions from a program from the National Science Foundation. Photo via Getty Images

Houston named semifinalist for major NSF energy transition funding opportunity

ON TO THE NEXT ROUND

The National Science Foundation announced 34 semifinalists for a regional innovation program that will deploy up to $160 million in federal funding over the next 10 years. Among the list of potential regions to receive this influx of capital is Houston.

The Greater Houston Partnership and the Houston Energy Transition Initiative developed the application for the NSF Regional Innovation Engine competition in collaboration with economic, civic, and educational leaders from across the city and five regional universities, including the University of Houston, The University of Texas at Austin, Texas Southern University, Rice University, and Texas A&M University.

The proposed project for Houston — called the Accelerating Carbon-Neutral Technologies and Policies for Energy Transition, or ACT, Engine — emphasizes developing sustainable and equitable opportunities for innovators and entrepreneurs while also pursuing sustainable and equitable energy access for all.

“The ACT Engine will leverage our diverse energy innovation ecosystem and talent, creating a true competitive advantage for existing and new energy companies across our region," says Jane Stricker, senior vice president of energy transition and executive director for HETI, in a statement. "Texas is leading the way in nearly every energy and energy transition solution, and this Engine can catalyze our region’s continued growth in low-carbon technology development and deployment."

If Houston's proposal is selected as a finalist, it could receive up to $160 million over 10 years. The final list of NSF Engines awards is expected this fall, and, according to a release, each awardee will initially receiving about $15 million for the first two years.

"Each of these NSF Engines semifinalists represents an emerging hub of innovation and lends their talents and resources to form the fabric of NSF's vision to create opportunities everywhere and enable innovation anywhere," NSF Director Sethuraman Panchanathan says in a news release. "These teams will spring ideas, talent, pathways and resources to create vibrant innovation ecosystems all across our nation."

The NSF selected its 34 semifinalists from 188 original applicants, and the next step for Houston is a virtual site visit that will assess competitive advantages, budget and resource plans for R&D and workforce development, and the proposed leadership’s ability to mobilize plans into action over the first two years.

"Houston is poised, like no other city, to lead the energy transition. The ACT Engine presents a remarkable opportunity to not only leverage the region's unparalleled energy resources and expertise but also harness our can-do spirit. Houston has a proven track record of embracing challenges and finding innovative solutions,” says Renu Khator, president of the University of Houston, in the statement. “Through the collaborative efforts facilitated by the ACT Engine, I am confident that we can make significant strides towards creating a sustainable future that harmonizes economic growth, environmental protection and social equity."

NSF Engines will announce awards this fall after a round of in-person interviews of finalists named in July. With Houston's track record for building thriving industry hubs in energy, health care, aerospace, and the culinary arts, the region is eager to establish the next generation of leaders and dreamers responding to some of the greatest economic and societal challenges ever seen in America.

“Our energy innovation ecosystem is inclusive, dynamic, and fast growing," says Barbara Burger, energy transition adviser and former Chevron executive, in the release. "The ACT Engine has the potential to increase the amount of innovation coming into the ecosystem and the capabilities available to scale technologies needed in the energy transition. I am confident that the members of the ecosystem — incubators, accelerators, investors, universities, and corporates — are ready for the challenge that the ACT Engine will provide."

The convergence of green banking with evergreen experimentation in support of a growing green economy sounds like just the right shade of green. Photo by micheile henderson/Unsplash

Green banking meets evergreen R&D with recent MOU

MONEY + MATTER

The term “Energy Transition” doesn’t merely imply change, it demands it. And with change comes another kind of change–usually of the dollars and cents kind.

While many aspire to embrace more sustainable and cleaner energy solutions in their communities, the affluence needed to deploy necessary infrastructure often sits just outside of reach. Until now, that is.

With the rise of “green banking,” securing financing for the adoption of energy efficiency, implementation of decarbonization technologies, and broader provision of renewable energy is now more accessible. Funds at green banks, backed by a blend of public and philanthropic contributions, tap into the modern trend of crowdfunding to support egalitarian and climate improvement efforts.

However, green bank financing is structured with repayment of–or a return on–capital expected at the end of the term, meaning approval tends only to be granted to proven and established projects well past the research and development stage. Given the Energy Transition is, for the most part, still in its infancy, clearing such hurdles can be difficult.

But Houston is full of dreamers and doers; researchers and entrepreneurs eager to tackle the next big challenge. It would come as no surprise then, that Texas’ first green bank, the Clean Energy Fund of Texas (“CEFTx”), bucks tradition with a novel Memorandum Of Understanding (“MOU”) co-signed by the Houston Advanced Research Center (“HARC”) to finance efforts staunchly entrenched in R&D activity.

As the Energy Transition foothold grows, Houstonians are compelled not just to invest in green initiatives, but to drive them. Which only makes sense, considering the deep expertise in energy innovation led most recently by the Houston-area shale revolutionaries from Mitchell Energy. Established over 40 years ago by George P. Mitchell himself, HARC plants the seeds of transformation at the intersection of science, resilience, sustainability, and the environment.

Per the March 29 news release from CEFTx, John Hall, President & CEO of HARC says, “We are excited to join forces with the team at Clean Energy Fund of Texas as they drive green investment in low-income and disadvantaged communities. Our research expertise and experience in managing state and federal grants will be a true benefit to Texans.”

The recent MOU brings Energy Transition visionaries the capital necessary to explore, test, develop, and deploy innovative solutions from conception to maturity. Entrepreneurs at all stages of the business lifecycle are encouraged to apply for funding on the CEFTx website or connect with HARC at an upcoming event to discover how the two entities can take ideas from dream to reality.

“It’s an honor to work with the esteemed researchers at HARC, who have been studying sustainability for decades,” says Stephen Brown of CEFTx in the release. “Together we can be even more effective at kickstarting investments in solar power, retrofits, and other technologies that help create the green workforce of tomorrow.”

The fresh approach to funding set up by CEFTx and HARC positions new companies to succeed and enables existing companies to progress in the transition to a more sustainable #futureofenergy. It’s just the sort of sense that is needed to truly drive change.

Kanin Energy set up shop in Greentown Labs last year to grow its impact on the energy transition. Photo via Getty Images

This energy transition startup taps Houston to grow, build its waste-heat-to-power tech

eyes on hou

Waste heat is everywhere, but in Houston, the Energy Capital of the World, it is becoming a hot commodity. What is it? Janice Tran, CEO of Kanin Energy, uses the example of turning ore into steel.

“There’s a lot of heat involved in that chemical process,” she says. “It’s a waste of energy.”

But Kanin Energy can do something about that. Its waste-heat-to-power, or WHP, concept uses a technology called organic rankine cycle. Tran explains that heat drives a turbine that generates electricity.

“It’s a very similar concept to a steam engine,” she says. Tran adds that the best term for what Kanin Energy does is “waste heat recovery.”

Emission-free power should be its own virtuous goal, but for companies creating waste heat, it can be an expensive endeavor both in terms of capital and human resources to work on energy transition solutions. But Kanin Energy helps companies to decarbonize with no cost to them.

“We can pay for the projects, then we pay the customers for that heat. We turn a waste product into a revenue stream for our customer,” Tran explains. Kanin Energy then sells the clean power back to the facility or to the grid, hence decarbonizing the facility gratis. Financing, construction, and operations are all part of the package.

Kanin Energy began at the height of the COVID-19 pandemic, in the spring of 2020.

“We started like a lotus. A lotus grows in mud — you start in the worst conditions and everything is better and easier from there,” says Tran.

That tough birth has helped provide the team with a discipline and thoughtfulness that’s been key to the company’s culture. Remote work has forced the team to get procedures clearly in place and react efficiently.

Back in May of 2020, its inception took place in Calgary. But the team, which also includes CDO Dan Fipke and CTO Jake Bainbridge, began to notice that many of their customers were either based in Houston or had Houston ties.

A year ago, the Kanin team visited Houston to see if the city could be a fit for an office. In July of 2022, Tran opened Kanin Energy offices in Greentown Labs.

“We’re hiring and building our team office out of Greentown. It’s been really great for us,” she says.

With the company now in its commercialization stage, Tran says that becoming part of the Houston energy ecosystem has been invaluable for Kanin.

The investments being made in climate tech and in energy transition make Space City the right place for the company. For Canadian-born Kanin Energy, Houston is now home. Investors across the nation, including Texas, are now helping Kanin to blossom, much like the lotus.

Janice Tran is the CEO and co-founder of Kanin Energy. Photo via LinkedIn

------

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Meta to buy all power from new ENGIE Texas solar farm

power purchase

Meta, the parent company of social media platform Facebook, has agreed to buy all of the power from a $900 million solar farm being developed near Abilene by Houston-based energy company ENGIE North America.

The 600-megawatt Swenson Ranch solar farm, located in Stonewall County, will be the largest one ever built in the U.S. by ENGIE. The solar farm is expected to go online in 2027.

Meta will use electricity generated by the solar farm to power its U.S. data centers. All told, Meta has agreed to purchase more than 1.3 gigawatts of renewable energy from four ENGIE projects in Texas.

“This project marks an important step forward in the partnership between our two companies and their shared desire to promote a sustainable and competitive energy model,” Paulo Almirante, ENGIE’s senior executive vice president of renewable and flexible power, said in a news release.

In September, ENGIE North America said it would collaborate with Prometheus Hyperscale, a developer of sustainable liquid-cooled data centers, to build data centers at ENGIE-owned renewable energy and battery storage facilities along the I-35 corridor in Texas. The corridor includes Austin, Dallas-Fort Worth, San Antonio and Waco.

The first projects under the ENGIE-Prometheus umbrella are expected to go online in 2026.

ENGIE and Prometheus said their partnership “brings together ENGIE's deep expertise in renewables, batteries, and energy management and Prometheus' highly efficient liquid-cooled data center design to meet the growing demand for reliable, sustainable compute capacity — particularly for AI and other high-performance workloads.”

Fervo named to prestigious list of climate tech companies to watch

top honor

Houston-based Fervo Energy has received yet another accolade—MIT Technology Review named the geothermal energy startup to its 2025 list of the 10 global climatetech companies to watch.

Fervo, making its second appearance on the third annual list, harnesses heat from deep below the ground to generate clean geothermal energy, MIT Technology Review noted. Fervo is one of four U.S. companies to land on the list.

Fervo “uses fracking techniques to create geothermal reservoirs capable of delivering enough electricity to power massive data centers and hundreds of thousands of homes,” MIT Technology Review said.

MIT Technology Review said it produces the annual list to draw attention to promising climatetech companies that are working to decarbonize major sectors of the economy.

“Though the political and funding landscape has shifted dramatically in the US since the last time we put out this list,” MIT Technology Review added, “nothing has altered the urgency of the climate dangers the world now faces — we need to rapidly curb greenhouse gas emissions to avoid the most catastrophic impacts of climate change.”

In addition to MIT Technology Review’s companies-to-watch list, Fervo has appeared on similar lists published by Inc.com, Time magazine and Climate Insider.

In an essay accompanying MIT Technology Review’s list, Microsoft billionaire Bill Gates said his Breakthrough Energy Ventures investment group has invested in more than 150 companies, including Fervo and another company on the MIT Technology Review list, Redwood Materials.

In his essay, Gates wrote that ingenuity is the best weapon against climate change.

Yet climate technology innovations “offer more than just a public good,” he said. “They will remake virtually every aspect of the world’s economy in the coming years, transforming energy markets, manufacturing, transportation, and many types of industry and food production. Some of these efforts will require long-term commitments, but it’s important that we act now. And what’s more, it’s already clear where the opportunities lie.”

In a recent blog post highlighting Fervo, Gates predicted geothermal will eventually supply up to 20 percent of the world’s electricity, up from his previous estimate of as much as 5 percent.

Fervo is one of the pioneers in geothermal energy. Gates and other investors have pumped $982 million into Fervo since its founding in 2017. With an estimated valuation of $1.4 billion, Fervo has achieved unicorn status, meaning its valuation as a private company exceeds $1 billion.

Aside from Breakthrough Energy Ventures, oilfield services provider Liberty Energy is a Fervo investor. U.S. Energy Secretary Chris Wright was chairman and CEO of Denver-based Liberty Energy before assuming his federal post.

Axios reported on Oct. 1 that Fervo is raising a $300 million series E round, which would drive up the startup’s valuation. News of the $300 million round comes as the company gears up for a possible IPO, according to Axios.

Fervo co-founder and CEO Tim Latimer told Axios this spring that a potential IPO is likely in 2026 or 2027. Ahead of an IPO, the startup is aiming for a $2 billion to $4 billion valuation, Axios reported.

The first phase of Fervo’s marquee Cape Station geothermal energy plant in Utah is scheduled to go online next year, with the second phase set to open in 2028. Once it’s completed, the plant will be capable of generating 500 megawatts of power. This summer, the startup said it secured $205.6 million in capital to finance construction of the plant.

Rice University team develops eco-friendly method to destroy 'forever chemicals' in water

clean water research

Rice University researchers have teamed up with South Korean scientists to develop the first eco-friendly technology that captures and destroys toxic “forever chemicals,” or PFAS, in water.

PFAS have been linked to immune system disruption, certain cancers, liver damage and reproductive disorders. They can be found in water, soil and air, as well as in products like Teflon pans, waterproof clothing and food packaging. They do not degrade easily and are difficult to remove.

Thus far, PFAS cleanup methods have relied on adsorption, in which molecules cling to materials like activated carbon or ion-exchange resins. But these methods tend to have limited capacity, low efficiency, slow performance and can create additional waste.

The Rice-led study, published in the journal Advanced Materials, centered on a layered double hydroxide (LDH) material made from copper and aluminum that could rapidly capture PFAS and be used to destroy the chemicals.

The study was led by Rice professor Youngkun Chung, a postdoctoral fellow under the mentorship of Michael S. Wong. It was conducted in collaboration with Seoktae Kang, professor at the Korea Advanced Institute of Science and Technology, and Keon-Ham Kim, professor at Pukyung National University, who first discovered the LDH material.

The team evaluated the LDH material in river water, tap water and wastewater. And, according to Rice, that material’s unique copper-aluminum layers and charge imbalances created an ideal binding environment to capture PFAS molecules.

“To my astonishment, this LDH compound captured PFAS more than 1,000 times better than other materials,” Chung, lead author of the study and now a fellow at Rice’s WaTER (Water Technologies, Entrepreneurship and Research) Institute and Sustainability Institute, said in a news release. “It also worked incredibly fast, removing large amounts of PFAS within minutes, about 100 times faster than commercial carbon filters.”

Next, Chung, along with Rice professors Pedro Alvarez and James Tour, worked to develop an eco-friendly, sustainable method of thermally decomposing the PFAS captured on the LDH material. They heated saturated material with calcium carbonate, which eliminated more than half of the trapped PFAS without releasing toxic by-products.

The team believes the study’s results could potentially have large-scale applications in industrial cleanups and municipal water treatments.

“We are excited by the potential of this one-of-a-kind LDH-based technology to transform how PFAS-contaminated water sources are treated in the near future,” Wong added in the news release. “It’s the result of an extraordinary international collaboration and the creativity of young researchers.”

---

This article originally appeared on our sister site, InnovationMap.