arts meets energy transition

Sustainable sculpture to power Houston multicultural arts building

The City of Houston is aiming to have Arco del Tiempo installed in 2024. Photo courtesy of The City of Houston

The City of Houston has unveiled the first look at the latest permanent public artwork that will be installed in the Second Ward in 2024. The sculpture is the first-ever environmentally sustainable art piece that will generate electricity for the nearby City-owned Latino multicultural performing arts theater.

Arco del Tiempo (Arch of Time) is a 100-foot tall arch designed by Berlin-based artist and architect Riccardo Mariano. Several years have been put into the making of this project, dating as far back as 2019. Mariano had entered the idea into a Land Art Generator Initiative (LAGI) design competition in the Houston sister-city of Abu Dhabi. From there, it was chosen to be developed full-scale and installed at Guadalupe Plaza Park.

According to a press release, the sculpture can measure time and cast beams of sunlight onto the ground, creating a connection between "the celestial and the terrestrial" through the geometry of the design.

The light beams are different based on the four seasons and the time of day, constantly shifting and responding to the latitude and longitude of the city from space. Mariano said that his sculpture is a "practical example" of how physical art can interact with the abstract, such as the Earth's movement around the sun.

"The apparent movement of the sun in the sky activates the space with light and colors and engages viewers who participate in the creation of the work by their presence," said Mariano. "Arco del Tiempo merges renewable energy generation with public space and into the everyday life of the Second Ward. Inspired by science and powered by renewable energy, the artwork is a bridge between art and technology and encourages educational purposes while improving public space. At night the space within the arch will be used as a stage for outdoor public events.”

"At night the space within the arch will be used as a stage for outdoor public events,” Riccardo Mariano said.Photo courtesy of The City of Houston

Arco del Tiempo will do more than just be an aesthetically pleasing sight for the community. Its meaningful, functional purpose will be to generate about 400,000 kilowatt-hours of electricity per year, and power the Talento Bilingüe de Houston. LAGI founding co-director Elizabeth Monoian said in the release the sculpture will generate over 12 million kilowatt-hours of power throughout its lifetime, which equals the removal of 8,500 metric tons of carbon dioxide from the atmosphere.

"Through the clean energy it produces, Arco del Tiempo will pay back its embodied carbon footprint," Monoian said. "In other words, all the energy that went into its making—from the smelting of the steel to the drilling that puts the final cladding into place—will be offset through the energy it generates. Beyond its break-even point, which we will track and celebrate with the community, the artwork will be a net-positive contributor to a healthy climate and the planet will be better off for its existence.”

In a statement, Houston Mayor Sylvester Turner praised the unique art piece as more than just a sculpture, but as a "monument to a new era of energy."

"The City of Houston has always stood at the vanguard of energy innovation and the Arco del Tiempo artwork stands in that tradition, highlighting Houston’s role as an art city and as global leader in the energy transition," Mayor Turner said. "We are inspired by the vision and creative thinking. Marrying clean energy, the built environment, and truly World Class art is Houston.”

------

This article originally ran on CultureMap.

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News