The study will look at improving sustainability within George Bush Intercontinental Airport in Houston. Photo courtesy of Airbus

A few major players have teamed up to look into making air travel more sustainable — and it's all happening in Houston.

The Center for Houston’s Future, Airbus, and Houston Airports have signed a memorandum of understanding intended to study the “feasibility of a hydrogen hub at George Bush Intercontinental Airport." The study, which will conclude in March of 2025, will include the participants that will collaborate ways to rethink how their infrastructures could be designed and operated to reduce an overall environmental footprint, and lead to hydrogen-powered aircrafts like the ones Airbus plans to bring to fruition by 2035.

In 2020, Airbus debuted its ZEROe hydrogen-powered aircraft project. The “Hydrogen Hub at Airports'' concept by Airbus unites key airport ecosystem players to develop ways to decarbonize all airport-associated infrastructure with hydrogen. The study will include airport ground transportation, airport heating, end-use in aviation, and possibly ways to supply adjacent customers in transport and local industries.

The use of hydrogen to power future aircraft aims to assist in eliminating aircraft CO2 emissions in the air, and also can help decarbonize air transport on the ground. With Houston being such a large city, and a destination for some many visiting on business, the Houston airports was an easy spot to assign the study.

"Houston’s airports are experiencing tremendous growth, connecting our city to the world like never before,” Jim Szczesniak, the aviation director for the city of Houston, says in a news release. “As we continue to expand and modernize our facilities, participating in this sustainability study is crucial. Continuing to build a sustainable airport system will ensure a healthy future for Houston, attract top talent and businesses, and demonstrate our commitment to being a responsible global citizen.

"This study will provide us with valuable insights to guide our development and position Houston as a global leader in sustainable aviation innovation for generations to come.”

The CHF was a founding organizer of the HyVelocity Hydrogen Hub, which was selected by the U.S. Department of Energy as one of seven hydrogen hubs in the nation, and will work in the Houston area and the Gulf Coast. The HyVelocity Hydrogen Hub is eligible to receive up to $1.2 billion as part of a Bipartisan Infrastructure Law funding to advance domestic hydrogen production.

“The Center for Houston’s Future is pleased to have played a crucial role in bringing together the partners for this study,” Brett Perlman, the center's outgoing CEO and president, adds. “With Houston’s role as the world’s energy capital, our record of energy innovation and desire to lead in the business of low-carbon energy, Houston is the perfect place to develop our airports as North American clean hydrogen pioneers.

———

This article originally ran on InnovationMap.

A Houston-based initiative has been selected by the DOE to receive funding to develop clean energy innovation programming for startups and entrepreneurs. Photo via Getty Images

Houston initiative selected for DOE program developing hubs for clean energy innovation

community focus

Houston has been selected as one of the hubs backed by a new program from the United States Department of Energy that's developing communities for clean energy innovation.

The DOE's Office of Technology Transitions announced the the first phase of winners of the Energy Program for Innovation Clusters, or EPIC, Round 3. The local initiative is one of 23 incubators and accelerators that was awarded $150,000 to support programming for energy startups and entrepreneurs.

The Houston-based participant is called "Texas Innovates: Carbon and Hydrogen Innovation and Learning Incubator," or CHILI, and it's a program meant to feed startups into the DOE recognized HyVelocity program and other regional decarbonization efforts.

EPIC was launched to drive innovation at a local level and to inspire commercial success of energy startups. It's the third year of the competition that wraps up with a winning participant negotiating a three-year cooperative agreement with OTT worth up to $1 million.

“Incubators and Accelerators are uniquely positioned to provide startups things they can't get anywhere else -- mentorship, technology validation, and other critical business development support," DOE Chief Commercialization Officer and Director of OTT Vanessa Z. Chan says in a news release. “The EPIC program allows us to provide consistent funding to organizations who are developing robust programming, resources, and support for innovative energy startups and entrepreneurs.”

CHILI, the only participant in Texas, now moves on to the second phase of the competition, where they will design a project continuation plan and programming for the next seven months to be submitted in September.

Phase 2 also includes two national pitch competitions with a total of $165,000 in cash prizes up for grabs for startups. The first EPIC pitch event for 2024 will be in June at the 2024 Small Business Forum & Expo in Minneapolis, Minnesota.

Last fall, the DOE selected the Gulf Coast's project, HyVelocity Hydrogen Hub, as one of the seven regions to receive a part of the $7 billion in Bipartisan Infrastructure Law. The hub was announced to receive up to $1.2 billion — the most any hub will get.


The DOE's OTT selections are nationwide. Photo via energy.gov

The City of Houston is aiming to have Arco del Tiempo installed in 2024. Photo courtesy of The City of Houston

Sustainable sculpture to power Houston multicultural arts building

arts meets energy transition

The City of Houston has unveiled the first look at the latest permanent public artwork that will be installed in the Second Ward in 2024. The sculpture is the first-ever environmentally sustainable art piece that will generate electricity for the nearby City-owned Latino multicultural performing arts theater.

Arco del Tiempo (Arch of Time) is a 100-foot tall arch designed by Berlin-based artist and architect Riccardo Mariano. Several years have been put into the making of this project, dating as far back as 2019. Mariano had entered the idea into a Land Art Generator Initiative (LAGI) design competition in the Houston sister-city of Abu Dhabi. From there, it was chosen to be developed full-scale and installed at Guadalupe Plaza Park.

According to a press release, the sculpture can measure time and cast beams of sunlight onto the ground, creating a connection between "the celestial and the terrestrial" through the geometry of the design.

The light beams are different based on the four seasons and the time of day, constantly shifting and responding to the latitude and longitude of the city from space. Mariano said that his sculpture is a "practical example" of how physical art can interact with the abstract, such as the Earth's movement around the sun.

"The apparent movement of the sun in the sky activates the space with light and colors and engages viewers who participate in the creation of the work by their presence," said Mariano. "Arco del Tiempo merges renewable energy generation with public space and into the everyday life of the Second Ward. Inspired by science and powered by renewable energy, the artwork is a bridge between art and technology and encourages educational purposes while improving public space. At night the space within the arch will be used as a stage for outdoor public events.”

"At night the space within the arch will be used as a stage for outdoor public events,” Riccardo Mariano said.Photo courtesy of The City of Houston

Arco del Tiempo will do more than just be an aesthetically pleasing sight for the community. Its meaningful, functional purpose will be to generate about 400,000 kilowatt-hours of electricity per year, and power the Talento Bilingüe de Houston. LAGI founding co-director Elizabeth Monoian said in the release the sculpture will generate over 12 million kilowatt-hours of power throughout its lifetime, which equals the removal of 8,500 metric tons of carbon dioxide from the atmosphere.

"Through the clean energy it produces, Arco del Tiempo will pay back its embodied carbon footprint," Monoian said. "In other words, all the energy that went into its making—from the smelting of the steel to the drilling that puts the final cladding into place—will be offset through the energy it generates. Beyond its break-even point, which we will track and celebrate with the community, the artwork will be a net-positive contributor to a healthy climate and the planet will be better off for its existence.”

In a statement, Houston Mayor Sylvester Turner praised the unique art piece as more than just a sculpture, but as a "monument to a new era of energy."

"The City of Houston has always stood at the vanguard of energy innovation and the Arco del Tiempo artwork stands in that tradition, highlighting Houston’s role as an art city and as global leader in the energy transition," Mayor Turner said. "We are inspired by the vision and creative thinking. Marrying clean energy, the built environment, and truly World Class art is Houston.”

------

This article originally ran on CultureMap.

The deadline to apply to participate in an upcoming energy-focused event is approaching. Photo courtesy of Rice

Rice Alliance calls for participants for its annual energy conference

now's the time to apply

This year marks the 20th anniversary of Energy Tech Venture Day, a one-day symposium for energy innovation put on by the Rice Alliance for Technology and Entrepreneurship. The organization is currently calling for applications for startups interested in participating.

The event is taking place on September 21 at Rice University and will bring together energy innovators, investors, corporate leaders, and the rest of the energy ecosystem. The programming will include panels and discussions as well as startup pitches from the Rice Alliance's Clean Energy Accelerator 2023 cohort.

In addition to the CEA pitches, energy tech startups from around the world can apply to be a part of the day and be in the running to be recognized as a select group as the "most-promising" at the conclusion of the pitches. Applications can be filled out online and are due July 14. Registration is also open online.

According to Rice, 90 or so companies will be selected to participate in one-on-one meetings with around 75 investors. The organization conducts a unique matchmaking round that pairs up investors and founders for four to 10 of these office hour meetings which will take place the day before the main event.

On the day of the Energy Tech Venture Day, around 40 companies will pitch to the rest of the crowd. At the end of the day and based off the investor feedback from the one-on-one meetings, 10 energy tech startups will be deemed the most-promising businesses and be presented with awards.

Last year, over a third of the companies that pitched were based in the Houston area. Two Houston-based companies received awards at the end of the day, including:

  • Kanin Energy, which works with heavy Industry to turn their waste heat into a clean baseload power source. The platform also provides tools such as project development, financing, and operations.
  • Syzygy Plasmonics, which is commercializing its light-reacting energy, which would greatly reduce carbon emissions in the chemical industry. The technology originated out of Rice University.
At Houston event, the Department of Energy’s Advanced Research Projects Agency-Energy announced $100 million in cleantech funding. Photos by Jeff Fitlow/Rice University

National agency announces $100M in funding for energy advancement at Houston event

seeing green

Rice University played host to the first-of-its-kind event from the Department of Energy’s Advanced Research Projects Agency-Energy, or ARPA-E, earlier this month in which the governmental agency announced $100 million in funding for its SCALEUP program.

Dubbed “ARPA-E on the Road: Houston,” the event welcomed more than 100 energy innovators to the Hudspeth Auditorium in Rice’s Anderson-Clarke Center on June 8. Evelyn Wang, director of ARPA-E, announced the funding, which represents the third installment from the agency for its program SCALEUP, or Seeding Critical Advances for Leading Energy technologies with Untapped Potential, which supports the commercialization of clean energy technology.

The funding is awarded to previous ARPA-E awardees with a "viable road to market" and "ability to attract private sector investments," according to a statement from the Department of Energy. Previous funding was granted in 2019 and 2021.

"ARPA-E’s SCALEUP program has successfully demonstrated what can happen when technical experts are empowered with the commercialization support to develop a strong pathway to market” Wang said. “I’m excited that we are building on the success of this effort with the third installment of SCALEUP, and I look forward to what the third cohort of teams accomplish.”

Rice Vice President for Research Ramamoorthy Ramesh also spoke at the event on how Rice is working to make Houston a leader in energy innovation. Joe Zhou, CEO of Houston-based Quidnet Energy, also spoke on a panel about how ARPA-E funding benefited his company along with Oregon-based Onboard Dynamics’s CEO Rita Hansen and Massachusetts-based Quaise Energy’s CEO Carlos Araque.

Attendees were able to ask questions to Wang and ARPA-E program directors about the agency’s funding approach and other topics at the event.

Houston energy innovators have benefited from programs like SCALEUP.

Quidnet Energy received $10 million in funding from ARPA-E as part of its SCALEUP program in 2022. The company's technology can store renewable energy for long periods of time in large quantities.

In January, Houston-based Zeta Energy also announced that it has secured funding from ARPA-E. The $4 million in funding came from the agency's Electric Vehicles for American Low-Carbon Living, or EVs4ALL, program. Zeta Energy is known for its lithium sulfur batteries

Jim Gable, vice president of innovation at Chevron and president of Chevron Technology Ventures, joins the Houston Innovators Podcast. Photo courtesy

Houston energy innovator on why now's the right time for energy transition innovation

HOUSTON INNOVATORS PODCAST EPISODE 190

The cleantech innovation space has momentum, and Chevron strives to be one of the incumbent energy companies playing a role in that movement, Jim Gable, vice president of innovation at Chevron and president of Chevron Technology Ventures, shares on the Houston Innovators Podcast.

"People call it cleantech 2.0, but it's really cleantech 3.0," Gable says, explaining how he's been there for each wave of cleantech. "The people are better now — the entrepreneurs are better, the investors are better. Exits are here in the cleantech space."

"It's all driven by policy-enabled markets, and the policy is here now too. Twenty years ago, you didn't have nearly the same level of policy influence that you do now," he continues. "Things are coming together to help us really create and deliver that affordable, reliable, ever cleaner energy that's going to be needed for a long time."

Both CTV and Gable have been operating with this vision of cleaner, more reliable and affordable energy for over two decades. Gable, who's worked in various leadership roles across the company, returned to a job in the venture side of the business in 2021. He's officially relocated to Houston to lead CTV, which is based in the Ion.

CTV acts as Chevron's external innovation bridge, evaluating pitches from around 1,000 companies a year, funding and accelerating startups, working with internal teams to implement new tech, and more, as Gable explains. Under CTV's umbrella is the venture fund, the Catalyst Program, and the Chevron Studio, a newer initiative that matches entrepreneurs with technology research in order to take that tech to market.

"We say we open doors to the future within Chevron," he says on the show. "We're the onramp for early stage technology to get into the company."

Now that he's firmly planted in the Houston innovation ecosystem, Gable says is optimistic about the incumbents and the innovators coming together in Houston to forge the future of energy.

"I would just encourage Houston to not try to be something that we're not. Houston's got to be Houston, and I don't think we should try, necessarily, to follow the same path as Palo Alto or Boston," Gable says, adding that Houston's large and specialized energy sector is not a disadvantage. "We may not have the same breadth of primary research that other ecosystems have, and that's perfectly OK."

Gable shares more on his perspective of Houston's ecosystem and the energy transition as a whole on the podcast. Listen to the interview below — or wherever you stream your podcasts — and subscribe for weekly episodes.


------

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

10+ exciting energy breakthroughs made by Houston teams in 2025

Year In Review

Editor's note: As 2025 comes to a close, we're revisiting the biggest headlines and major milestones of the energy sector this year. Here are the most exciting scientific breakthroughs made by Houstonians this year that are poised to shape the future of energy:

Rice University team develops eco-friendly method to destroy 'forever chemicals' in water

Rice University researchers have developed a new method for removing PFAS from water that works 100 times faster than traditional filters. Photo via Rice University.

Rice University researchers have teamed up with South Korean scientists to develop the first eco-friendly technology that captures and destroys toxic “forever chemicals,” or PFAS, in water. The Rice-led study centered on a layered double hydroxide (LDH) material made from copper and aluminum that could rapidly capture PFAS and be used to destroy the chemicals.

UH researchers make breakthrough in cutting carbon capture costs

UH carbon capture cost cutting

A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants. Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team first introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process.The second breakthrough displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge.

Houston team’s discovery brings solid-state batteries closer to EV use

Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images.

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape. Their work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

Houston researchers make breakthrough on electricity-generating bacteria

A team of Rice researchers, including Caroline Ajo-Franklin and Biki Bapi Kundu, has uncovered how certain bacteria breathe by generating electricity. Photo by Jeff Fitlow/Rice University.

Research from Rice University that merges biology with electrochemistry has uncovered new findings on how some bacteria generate electricity. Research showed how some bacteria use compounds called naphthoquinones, rather than oxygen, to transfer electrons to external surfaces in a process known as extracellular respiration. In other words, the bacteria are exhale electricity as they breathe. This process has been observed by scientists for years, but the Rice team's deeper understanding of its mechanism is a major breakthrough, with implications for the clean energy and industrial biotechnology sectors, according to the university.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A study from researchers at Rice University could lead to future advances in superconductors with the potential to transform energy use. The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials. The materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

UH researchers develop breakthrough material to boost efficiency of sodium-ion batteries

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance. The Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. This material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

Houston researchers make headway on developing low-cost sodium-ion batteries

Houston researchers make headway on developing low-cost sodium-ion batteries

Rice's Atin Pramanik and a team in Pulickel Ajayan's lab shared new findings that offer a sustainable alternative to lithium batteries by enhancing sodium and potassium ion storage. Photo by Jeff Fitlow/Courtesy Rice University

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries. The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

Houston scientists develop 'recharge-to-recycle' reactor for lithium-ion batteries

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock. The findings demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing. The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs.

Houston researchers develop strong biomaterial that could replace plastic

A team led by M.A.S.R. Saadi and Muhammad Maksud Rahman has developed a biomaterial that they hope could be used for the “next disposable water bottle." Photo courtesy Rice University.

Collaborators from two Houston universities are leading the way in engineering a biomaterial into a scalable, multifunctional material that could potentially replace plastic. The study introduced a biosynthesis technique that aligns bacterial cellulose fibers in real-time, which resulted in robust biopolymer sheets with “exceptional mechanical properties.” Ultimately, the scientists hope this discovery could be used for the “next disposable water bottle,” which would be made by biodegradable biopolymers in bacterial cellulose, an abundant resource on Earth. Additionally, the team sees applications for the materials in the packaging, breathable textiles, electronics, food and energy sectors.

Houston researchers reach 'surprising' revelation in materials recycling efforts

A team led by Matteo Pasquali, director of Rice’s Carbon Hub, has unveiled how carbon nanotube fibers can be a sustainable alternative to materials like steel, copper and aluminum. Photo by Jeff Fitlow/ Courtesy Rice University

Researchers at Rice University have demonstrated how carbon nanotube (CNT) fibers can be fully recycled without any loss in their structure or properties. The discovery shows that CNT fibers could be used as a sustainable alternative to traditional materials like metals, polymers and the larger, harder-to-recycle carbon fibers, which the team hopes can pave the way for more sustainable and efficient recycling efforts.

UH lands $1M NSF grant to train future critical minerals workforce

workforce pipeline

The University of Houston has launched a $1 million initiative funded by the National Science Foundation to address the gap in the U.S. mineral industry and bring young experts to the field.

The program will bring UH and key industry partners together to expand workforce development and drive research that fuels innovation. It will be led by Xuqing "Jason" Wu, an associate professor of information science technology.

“The program aims to reshape public perception of the critical minerals industry, highlighting its role in energy, defense and advanced manufacturing,” Wu said in a news release. “Our program aims to showcase the industry’s true, high-tech nature.”

The project will sponsor 10 high school students and 10 community college students in Houston each year. It will include industry mentors and participation in a four-week training camp that features “immersive field-based learning experiences.”

“High school and community college students often lack exposure to career pathways in mining, geoscience, materials science and data science,” Wu added in the release. “This project is meant to ignite student interest and strengthen the U.S. workforce pipeline in the minerals industry by equipping students with technical skills, industry knowledge and career readiness.”

This interdisciplinary initiative will also work with co-principal investigators across fields at UH:

  • Jiajia Sun, Earth & Atmospheric Sciences
  • Yan Yao and Jiefu Chen, Electrical and Computer Engineering
  • Yueqin Huang, Information Science Technology

According to UH, minerals and rare earth elements have become “essential building blocks of modern life” and are integral components in technology and devices, roads, the energy industry and more.

Houston microgrid company names new CEO

new hire

Houston-based electric microgrid company Enchanted Rock has named a new CEO.

John Carrington has assumed the role after serving as Enchanted Rock's executive chairman since June, the company announced earlier this month.

Carrington most recently was CEO of Houston-based Stem, which offers AI-enabled software and services designed for setting up and operating clean energy facilities. He stepped down as Stem’s CEO in September 2024. Stem, which was founded in 2006 and went public under Carrington's leadership in 2021, was previously based in San Francisco.

Carrington has also held senior leadership roles at Miasolé, First Solar and GE.

Corey Amthor has served as acting CEO of Enchanted Rock since June. He succeeded Enchanted Rock founder Thomas McAndrew in the role, with McAndrew staying on with the company as a strategic advisor and board member. With the hiring of Carrington, Amthor has returned to his role as president. According to the company, Amthor and Carrington will "partner to drive the company’s next phase of growth."

“I’m proud to join a leadership team known for technical excellence and execution, and with our company-wide commitment to innovation, we are well positioned to navigate this moment of unprecedented demand and advance our mission alongside our customers nationwide,” Carrington said in the news release. “Enchanted Rock’s technology platform delivers resilient, clean and scalable ultra-low-emissions onsite power that solves some of the most urgent challenges facing our country today. I’m energized by the strong momentum and growing market demand for our solutions, and we remain committed to providing data centers and other critical sectors with the reliable power essential to their operations.”

This summer, Enchanted Rock also announced that Ian Blakely would reassume the role of CFO at the company. He previously served as chief strategy officer. Paul Froutan, Enchanted Rock's former CTO, was also named COO last year.