Texas continues to lead the nation in clean energy adoption and grid modernization. Photo by Moritz Lange on Unsplash

Texas leads the nation in energy production, providing about one-fourth of the country’s domestically produced primary energy. It is also the largest energy-consuming state, accounting for about one-seventh of the nation’s total energy use, and ranks sixth among the states in per capita energy consumption.

However, because Texas produces significantly more energy than it consumes, it stands as the nation’s largest net energy supplier. October marked National Energy Awareness Month, so this is an ideal time to reflect on how far Texas has come in improving energy efficiency.

Progress in Clean Energy and Grid Resilience

Texas continues to lead the nation in clean energy adoption and grid modernization, particularly in wind and solar power. With over 39,000 MW of wind capacity, Texas ranks first in the country in wind-powered electricity generation, now supplying more than 10% of the state’s total electricity.

This growth was significantly driven by the Renewable Portfolio Standard (RPS), which requires utility companies to produce new renewable energy in proportion to their market share. Initially, the RPS aimed to generate 10,000 MW of renewable energy capacity by 2025. Thanks to aggressive capacity building, this ambitious target was reached much earlier than anticipated.

Solar energy is also expanding rapidly, with Texas reaching 16 GW of solar capacity as of April 2024. The state has invested heavily in large-scale solar farms and supportive policies, contributing to a cleaner energy mix.

Texas is working to integrate both wind and solar to create a more resilient and cost-effective grid. Efforts to strengthen the grid also include regulatory changes, winterization mandates, and the deployment of renewable storage solutions.

While progress is evident, experts stress the need for continued improvements to ensure grid reliability during extreme weather events, when we can’t rely on the necessities for these types of energy sources to thrive. To put it simply, the sun doesn’t always shine, and the wind doesn’t always blow.

Federal Funding Boosts Energy Efficiency

In 2024, Texas received $22.4 million, the largest share of a $66 million federal award, from the U.S. Department of Energy’s Energy Efficiency Revolving Loan Fund Capitalization Grant Program.

The goal of this funding is to channel federal dollars into local communities to support energy-efficiency projects through state-based loans and grants. According to the DOE, these funds can be used by local businesses, homeowners, and public institutions for energy audits, upgrades, and retrofits that reduce energy consumption.

The award will help establish a new Texas-based revolving loan fund modeled after the state’s existing LoanSTAR program, which already supports cost-effective energy retrofits for public facilities and municipalities. According to the Texas Comptroller, as of 2023, the LoanSTAR program had awarded more than 337 loans totaling over $600 million.

In addition to expanding the revolving loan model, the state plans to use a portion of the DOE funds to offer free energy audit services to the public. The grant program is currently under development.

Building on this momentum, in early 2025, Texas secured an additional $689 million in federal funding to implement the Home Energy Performance-Based, Whole House (HOMES) rebate program and the Home Electrification and Application Rebate (HEAR) program.

This investment is more than five times the state’s usual energy efficiency spending. Texas’s eight private Transmission and Distribution Utilities typically spend about $110 million annually on such measures. The state will have multiple years to roll out both the revolving loan and rebate programs.

However, valuable federal tax incentives for energy-efficient home improvements are set to expire on December 31, 2025, including:

  • The Energy Efficiency Home Improvement Credit allows homeowners to claim up to $3,200 per year in federal income tax credits, covering 30% of the cost of eligible upgrades, such as insulation, windows, doors, and high-efficiency heating and cooling systems.
  • The Residential Clean Energy Credit provides a 30% income tax credit for the installation of qualifying clean energy systems, including rooftop solar panels, wind turbines, geothermal heat pumps, and battery storage systems.

As these incentives wind down, the urgency grows for Texas to build on the positive gains from the past several years despite reduced federal funding. The state has already made remarkable strides in clean energy production, grid modernization, and energy-efficiency investments, but the path forward requires a strategic and inclusive approach to energy planning. Through ongoing state-federal collaboration, community-driven initiatives, and forward-looking policy reforms, Texas can continue its progress, ensuring that future energy challenges are met with sustainable and resilient solutions.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

The 1-gigawatt site will be constructed at a cost of approximately $8 billion. Photo courtesy ECL

California co. announces fully sustainable, hydrogen-powered data center in Houston

moving in

The Houston area will soon be home to what's being lauded as the first fully sustainable 1-gigawatt data center on a 600-acres site east of Houston.

Data center-as-a-service company ECL, headquartered in Mountain View, California, announced its plans to build the ECL TerraSite-TX1. Hardware and cloud service company Lambda will serve as its first tenant. Lambda and other AI leaders will get access to necessary space and power for the next wave zero emission innovations.

Phase 1 of TerraSite-TX1 will be complete by summer of 2025 with a cost of approximately $450 million. The 50 megawatt of data center capacity will be utilized by data center cloud and AI cloud operators. The 1-gigawatt site will be constructed at a cost of approximately $8 billion. The funding will come from ECL and financial partners.

ECL Terrasite-TX1 comes at a needed time for Texas with The Electric Reliability Council of Texas stating on June 12 that the state’s power grid needs will grow approximately double by 2030. This is due in part to the growth of data centers and AI. The ECL Terrasite-TX1 is built to help eliminate the stress on the state’s power grid and help facilitate “state-level economic development and growth of the AI industry,” according to a news release.

ECL houston data centerThe project will span over 600 acres east of Houston. Rendering courtesy ECL

ECL data centers are built to be modular, which allows for expansion in 1-megawatt increments. They are “ built to suit” and delivered in less than 12 months, which is shorter than the industry standard of 36 to 48.

“While others talk about delivering off-grid, hydrogen-powered data centers in five, ten, or 20 years, only ECL is giving the AI industry the space, power, and peace of mind they and their customers need, now,” Yuval Bachar, co-founder and CEO of ECL, says in a news release. “The level of innovation that we have introduced to the market is unprecedented and will serve not only us and our customers but the entire data center industry for decades to come.”

ECL’s ECL-MV1 is the world’s first off-grid, hydrogen-powered modular data center that operates 24/7 with zero emissions, less noise, and a negative water footprint that replenishes water to the community. ECL-MV1 offers a 10x increase in “energy efficiency with a power usage effectiveness of 1.05 and a 7-times improvement in data density per rack, which is ideal for AI high-density demand” according to the release.

“The data center technology committed to by ECL is truly transformative in the industry,” Lambda's Vice President for Data Center Infrastructure Ken Patchett adds. “We believe ECL’s technology could unlock a powerful and eco-conscious foundation for AI advancement. This new infrastructure could give researchers and developers essential computational resources while drastically reducing the environmental impact of AI operations.”

NanoTech is targeting new overseas markets for its energy efficiency products. Photo via Getty Images

Promising Houston startup expands energy efficiency product to Middle East, Singapore

big move

NanoTech Materials has announced a big expansion for its business.

The Houston company, which created a roof coating using nanotechnology that optimizes energy efficiency, has partnered with Terminal Subsea Solutions Marine Service SP to bring its products to the Gulf Cooperation Council and Singapore. TSSM will become a partner of Houston’s NanoTech Materials products, which will include the Cool Roof Coat, Vehicular Coat, and Insulative Coat for the GCC countries and Singapore.

NanoTech Materials technology that ranges from roof coatings on mid- to low-rise buildings to shipping container insulation to coating trucks and transportation vehicles will be utilized by TSSM in the partnership. NanoTech’s efforts are focused on heat mitigation that can reduce energy costs, enhance worker safety, and minimize business risks in the process.

“Businesses and communities within the GCC and Singapore feel the impact of extreme temperatures and longer Summers more acutely than any other region in the world,” Mike Francis, CEO of NanoTech Materials, says in a news release. “We have an opportunity to make a real impact here through reduced energy load, cooler and safer working conditions, and a reduced carbon emissions output from the hottest, driest place on earth. We are incredibly excited to be partnering with our colleagues at TSSM to bring this powerful technology to the region.”

One of the areas that will benefit from this collaboration is the Middle East. The GCC region is characterized by a desert climate, which has average annual temperature reaching 107.6°F and summer peaks climbing as high as 130°F. The effects of these extreme conditions can be dangerous for workers especially with strict labor laws mandating midday work bans under black flag conditions, which can result in productivity losses as well.

NanoTech’s proprietary technology, the Insulative Ceramic Particle (ICP), will be used to address challenges in energy efficiency and heat control in the logistics and built environment sector. The platform can be integrated into many applications, and the impact can range from reducing greenhouse gas emissions to protecting communities that are wildfire-prone. The core of the technology has a lower conductivity than aerogels. It also has a “near-perfect emissivity score” according to the company. The NanoTech ICP is integrated with base matrix carriers; building materials, coatings, and substrates, which gives the materials heat conservation, rejection, or containment properties.

By combining the ICP into an acrylic roof coating, NanoTech has created the Cool Roof Coat, which reflects sunlight and increases the material's heat resistance. This can lower indoor temperatures by 25 to 45°F in single-story buildings and reduce the carbon emissions of mid to low-rise buildings. This can potentially equal energy savings from 20 percent up to 50 percent, which would surpass the average 15 percent savings of traditional reflective only coatings.

“This technology will have a huge impact on supporting the region's aggressive climate initiatives, such as Saudi Arabia’s Green Initiative, aiming to reduce carbon emissions by 278 million tons annually by 2030,” Jameel Ahmed, managing director at TSSM, says in the release. “The regional efforts to enhance climate action and economic opportunities through substantial investments in green technologies and projects are evident, and we are proud to be offering a product that can make a difference.”

NanoTech says its coating maintains its effectiveness over time and doesn’t suffer UV degradation issues which are helpful, especially in extreme weather conditions workers and businesses face in regions like the Middle East.

The DOE funding will go toward the creation of a new Texas-based revolving loan fund that operationally matches the existing Texas LoanSTAR revolving loan program. Photo via Getty Images

Texas lands largest portion of energy efficiency-focused federal grant program

DOE deal

Texas is among one of 17 states and territories to receive a portion of $66 million in awards for initiatives that pump federal dollars into their communities to support energy efficient projects.

The funds come from the U.S. Department of Energy's Energy Efficiency Revolving Loan Fund (RLF) Capitalization Grant Program. The RLF Program awards are intended to be put toward state-based loans and grants that go towards local businesses homeowners, and public spaces for "for energy efficiency audits, upgrades, and retrofits to increase energy efficiency," according to the DOE.

Texas received the largest portion thus far at $22.4 million. The dollars will go toward the creation of a new Texas-based revolving loan fund that operationally matches the existing Texas LoanSTAR revolving loan program.

The program currently finances energy-related, cost-reduced retrofits of public spaces as well as local municipalities. As of last year it had awarded more than 337 loans totaling more than $600 million, according to the Texas Comptroller's website.

In addition to the revolving loan, the state plans to use the DOE funds to provide free energy audit services to the community.

The DOE also awarded funding to create similar revolving loan programs and grants in Arizona, Georgia, Iowa, Puerto Rico and the U.S. Virgin Islands.

According to the DOE, every federal dollar invested into a state or local revolving loan fund can bring more than of $20 in private capital toward successful energy financing programs.

“Increased opportunities for low-cost financing will help states and territories expand access to the money-saving clean energy tools that will benefit the residential, commercial and public sectors,” Jennifer M. Granholm, U.S. Secretary of Energy, said in a statement. “We are excited to see states and territories take advantage of targeted and impactful financing options to transform their communities.”

The latest funding is the third award made by the RLF Program, which plans to make another round of awards later this year and a total $242 million once wrapped.

Other awards in this latest round include:

  • Arizona ($1,690,280)
  • Colorado ($1,631,220)
  • Delaware ($746,400)
  • Georgia ($2,453,810)
  • Iowa($7,068,920)
  • Kansas ($6,706,230)
  • Maine ($863,110)
  • Massachusetts ($1,894,760)
  • Minnesota ($1,884,300).
  • Nevada ($1,043,290)
  • New Jersey ($2,383,510)
  • New Mexico ($5,692,530)
  • Oklahoma ($7,592,300)
  • Puerto Rico ($1,070,490)
  • Rhode Island ($762,790)
  • U.S. Virgin Islands ($576,170)

Click here and here to read more about the previous awards.

Earlier this summer the DOE also awarded four Houston companies have received $50,000 each from the U.S. Department of Energy to further develop their carbon dioxide removal technology. Click here to read more.

Daikin is the world’s leading air conditioning and refrigeration company, with its US headquarters and North America manufacturing facility based in Waller, Texas. Photo via htxenergytransition.org

Visiting Daikin: Houston energy transition innovation is the heart of operations

the view from HETI

In the energy capital of the world, we often think and talk about the energy transition and low carbon solutions in the context of energy production and distribution – whether it’s adding more renewables to the grid, reducing the CO2 emissions of our existing energy resources with CCUS and Hydrogen, developing energy storage technology to manage intermittency, or deploying other innovative solutions designed to produce or deliver more energy with fewer emissions – Houston is leading on all fronts.

But these aren’t the only solutions needed as we seek to solve one of the most challenging issues of our time. We cannot focus only on innovating the production and distribution of energy. As the demand for energy grows, locally and globally, we must also think innovatively about reducing the demand for energy, while still maintaining, and improving, quality of life. I had the opportunity recently to visit a company that is doing just that, right here in the Houston region.

Daikin is the world’s leading air conditioning and refrigeration company, with their US headquarters and North America manufacturing facility based right here, just 30 minutes northwest of downtown Houston in Waller, Texas. The Daikin Texas Technology Park, a 4.2 million ft2 facility, equal to 74 football fields, is dedicated to developing, manufacturing and marketing innovative solutions for meeting its customers’ needs while also reducing the energy required to keep people cool. Currently, air conditioning accounts for around 10% of global electricity consumption, with rapid demand growth expected in the future. As electrification becomes a key pathway to the decarbonization of various industries, demand for low-carbon power will continue to grow.

Achieving an affordable, reliable, and low-carbon future will require innovation across the entire energy value chain – from production to consumption, and, as the world’s leading air conditioning manufacturer, Daikin, is leading the way in developing innovative solutions to achieve optimum comfort and energy savings.

Three things struck me during my recent visit to the Daikin Texas Technology Park (DTTP):

  1. Innovation is at the heart of their operation. The integration of engineering and manufacturing in a single location facilitates collaboration and product innovation and accelerates implementation. The LEED Gold Certified facility was also innovatively designed to maximize energy efficiency and minimize environmental impact.
  2. People are a priority. The diversity of the 8000+ employees working at the DTTP was incredible. During the visit, we had the opportunity to see team members from many different backgrounds and with various skills and education working in all parts of their operation. They also offer a STEM scholarship program in partnership with the Waller Area Chamber of Commerce.
  3. They are environmentally focused. Daikin is fully committed to providing energy solutions that improve quality of life while also reducing environmental impact through improved efficiency. The heating and air conditioning products manufactured at the DTTP are some of the most innovative and energy efficient products on the market today – producing a more even temperature and offering as much as a 30% reduction in energy use compared to standard AC systems, all with a considerably smaller footprint.

As someone who spends a great deal of time thinking about the pathways to solving the global dual challenge of more energy with fewer emissions, much of my time is spent learning about innovations on the supply side of energy. It is exciting to learn that there is just as much innovation happening on the demand side of energy – and to see it happening right here in Houston.

———

This article was written by Jane Stricker, executive director and senior vice president of theGreater Houston Partnership's Houston Energy Transition Initiative and originally ran on the HETI blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

To learn more about Daikin’s entire line of innovative heating and air conditioning products and how they are Perfecting the Air, visit the Daikin global website.

The project will focus on testing 5G networks for "stability, interoperability, energy efficiency and communication performance." Photo via Getty Images

Rice-led project receives $1.9M in federal funding to test 5G energy efficiency, more

fresh support

A team of Rice University engineers has secured a $1.9 million grant from the U.S. Department of Commerce’s National Telecommunications and Information Administration to develop a new way to test 5G networks.

The project will focus on testing 5G networks for software-centric architectures, according to a statement from Rice. The funds come from the NTIA's most recent round of grants, totaling about $80 million, as part of the $1.5 billion Public Wireless Supply Chain Innovation Fund. Other awards went to Virginia Tech, Northeastern University, DISH Wireless, and more.

The project at Rice will be led by Rahman Doost-Mohammady, an assistant research professor of electrical and computer engineering; and Ashutosh Sabharwal, the Ernest Dell Butcher Professor of Engineering and chair of the Department of Electrical and Computer Engineering. Santiago Segarra, assistant professor of electrical and computer engineering and an expert in machine learning for wireless network design, is also a co-principal investigator on this project.

"Current testing methodologies for wireless products have predominantly focused on the communication dimension, evaluating aspects such as load testing and channel emulation,” said Doost-Mohammady said in a statement. “But with the escalating trend toward software-based wireless products, it’s imperative that we take a more holistic approach to testing."

The new framework will be used to "assess the stability, interoperability, energy efficiency and communication performance of software-based machine learning-enabled 5G radio access networks (RANs)," according to Rice, known as ETHOS.

Once created, the team of researchers will use the framework for extensive testing using novel machine learning algorithms for 5G RAN with California-based NVIDIA's Aerial Research Cloud (ARC) platform. The team also plans to partner with other industry contacts in the future, according to Rice.

“The broader impacts of this project are far-reaching, with the potential to revolutionize software-based and machine learning-enabled wireless product testing by making it more comprehensive and responsive to the complexities of real-world network environments,” Sabharwal said in the statement. “By providing the industry with advanced tools to evaluate and ensure the stability, energy efficiency and throughput of their products, our research is poised to contribute to the successful deployment of 5G and beyond wireless networks.”

Late last year, the Houston location of Greentown Labs also landed funds from the Department of Commerce. The climatetech startup incubator was named to of the Economic Development Administration's 10th cohort of its Build to Scale program and will receive $400,000 with a $400,000 local match confirmed.

Houston-based nonprofit accelerator, BioWell, also received funding from the Build to Scale program.


———

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston company wins contract to operate South Texas wind farm

wind deal

Houston-based Consolidated Asset Management Services (CAMS), which provides services for owners of energy infrastructure, has added the owner of a South Texas wind power project to its customer list.

The new customer, InfraRed Capital Partners, owns the 202-megawatt Mesteño Wind Project in the Rio Grande Valley. InfraRed bought the wind farm from Charlotte, North Carolina-based power provider Duke Energy in 2024. CAMS will provide asset management, remote operations, maintenance, compliance and IT services for the Mesteño project.

Mesteño began generating power in 2019. The wind farm is connected to the electric grid operated by the Energy Reliability Council of Texas (ERCOT).

With the addition of Mesteño, CAMS now manages wind energy projects with generation capacity of more than 2,500 megawatts.

Mesteño features one of the tallest wind turbine installations in the U.S., with towers reaching 590.5 feet. Located near Rio Grande City, the project produces enough clean energy to power about 60,000 average homes.

In June, CAMS was named to the Financial Times’ list of the 300 fastest-growing companies in North and South America. The company’s revenue grew more than 70 percent from 2020 to 2023.

Earlier this year, CAMS jumped into the super-hot data center sector with the rollout of services designed to help deliver reliable, cost-effective power to energy-hungry data centers. The initiative focuses on supplying renewable energy and natural gas.

Google's $40B investment in Texas data centers includes energy infrastructure

The future of data

Google is investing a huge chunk of money in Texas: According to a release, the company will invest $40 billion on cloud and artificial intelligence (AI) infrastructure, with the development of new data centers in Armstrong and Haskell counties.

The company announced its intentions at a meeting on November 14 attended by federal, state, and local leaders including Gov. Greg Abbott who called it "a Texas-sized investment."

Google will open two new data center campuses in Haskell County and a data center campus in Armstrong County.

Additionally, the first building at the company’s Red Oak campus in Ellis County is now operational. Google is continuing to invest in its existing Midlothian campus and Dallas cloud region, which are part of the company’s global network of 42 cloud regions that deliver high-performance, low-latency services that businesses and organizations use to build and scale their own AI-powered solutions.

Energy demands

Google is committed to responsibly growing its infrastructure by bringing new energy resources onto the grid, paying for costs associated with its operations, and supporting community energy efficiency initiatives.

One of the new Haskell data centers will be co-located with — or built directly alongside — a new solar and battery energy storage plant, creating the first industrial park to be developed through Google’s partnership with Intersect and TPG Rise Climate announced last year.

Google has contracted to add more than 6,200 megawatts (MW) of net new energy generation and capacity to the Texas electricity grid through power purchase agreements (PPAs) with energy developers such as AES Corporation, Enel North America, Intersect, Clearway, ENGIE, SB Energy, Ørsted, and X-Elio.

Water demands

Google’s three new facilities in Armstrong and Haskell counties will use air-cooling technology, limiting water use to site operations like kitchens. The company is also contributing $2.6 million to help Texas Water Trade create and enhance up to 1,000 acres of wetlands along the Trinity-San Jacinto Estuary. Google is also sponsoring a regenerative agriculture program with Indigo Ag in the Dallas-Fort Worth area and an irrigation efficiency project with N-Drip in the Texas High Plains.

In addition to the data centers, Google is committing $7 million in grants to support AI-related initiatives in healthcare, energy, and education across the state. This includes helping CareMessage enhance rural healthcare access; enabling the University of Texas at Austin and Texas Tech University to address energy challenges that will arise with AI, and expanding AI training for Texas educators and students through support to Houston City College.

---

This article originally appeared on CultureMap.com.

Texas A&M's micro-nuclear reactor tops energy transition news to know

Trending News

Editor's note: The top energy transition news of November includes major energy initiatives from Texas universities and the creation of a new Carbon Measures coalition. Here are the most-read EnergyCapitalHTX stories from Nov. 1-15:

1. Micro-nuclear reactor to launch next year at Texas A&M innovation campus

Last Energy will build a 5-megawatt reactor at the Texas A&M-RELLIS campus. Photo courtesy Last Energy.

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan. Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid. Continue reading.

2. Baker Hughes to provide equipment for massive low-carbon ammonia plant

Baker Hughes will supply equipment for Blue Point Number One, a $4 billion low-carbon ammonia plant being developed in Louisiana. Photo courtesy Technip Energies.

Houston-based energy technology company Baker Hughes has been tapped to supply equipment for what will be the world’s largest low-carbon ammonia plant. French technology and engineering company Technip Energies will buy a steam turbine generator and compression equipment from Baker Hughes for Blue Point Number One, a $4 billion low-carbon ammonia plant being developed in Louisiana by a joint venture comprising CF Industries, JERA and Mitsui & Co. Technip was awarded a contract worth at least $1.1 billion to provide services for the Blue Point project. Continue reading.

3. Major Houston energy companies join new Carbon Measures coalition

The new Carbon Measures coalition will create a framework that eliminates double-counting of carbon pollution and attributes emissions to their sources. Photo via Getty Images.

Six companies with a large presence in the Houston area have joined a new coalition of companies pursuing a better way to track the carbon emissions of products they manufacture, purchase and finance. Houston-area members of the Carbon Measures coalition are Spring-based ExxonMobil; Air Liquide, whose U.S. headquarters is in Housto; Mitsubishi Heavy Industries, whose U.S. headquarters is in Houston; Honeywell, whose Performance Materials and Technologies business is based in Houston; BASF, whose global oilfield solutions business is based in Houston; and Linde, whose Linde Engineering Americas business is based in Houston. Continue reading.

4. Wind and solar supplied over a third of ERCOT power, report shows

A new report from the U.S. Energy Information Administration shows that wind and solar supplied more than 30 percent of ERCOT’s electricity in the first nine months of 2025. Photo via Unsplash.

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA). The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024. Continue reading.

5. Rice University partners with Australian co. to boost mineral processing, battery innovation

Locksley Resources will provide antimony-rich feedstocks from a project in the Mojave Desert as part of a new partnership with Rice University that aims to develop scalable methods for extracting and utilizing antimony. Photo via locksleyresources.com.au.

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage. Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Continue reading.