the view from HETI

Visiting Daikin: Houston energy transition innovation is the heart of operations

Daikin is the world’s leading air conditioning and refrigeration company, with its US headquarters and North America manufacturing facility based in Waller, Texas. Photo via htxenergytransition.org

In the energy capital of the world, we often think and talk about the energy transition and low carbon solutions in the context of energy production and distribution – whether it’s adding more renewables to the grid, reducing the CO2 emissions of our existing energy resources with CCUS and Hydrogen, developing energy storage technology to manage intermittency, or deploying other innovative solutions designed to produce or deliver more energy with fewer emissions – Houston is leading on all fronts.

But these aren’t the only solutions needed as we seek to solve one of the most challenging issues of our time. We cannot focus only on innovating the production and distribution of energy. As the demand for energy grows, locally and globally, we must also think innovatively about reducing the demand for energy, while still maintaining, and improving, quality of life. I had the opportunity recently to visit a company that is doing just that, right here in the Houston region.

Daikin is the world’s leading air conditioning and refrigeration company, with their US headquarters and North America manufacturing facility based right here, just 30 minutes northwest of downtown Houston in Waller, Texas. The Daikin Texas Technology Park, a 4.2 million ft2 facility, equal to 74 football fields, is dedicated to developing, manufacturing and marketing innovative solutions for meeting its customers’ needs while also reducing the energy required to keep people cool. Currently, air conditioning accounts for around 10% of global electricity consumption, with rapid demand growth expected in the future. As electrification becomes a key pathway to the decarbonization of various industries, demand for low-carbon power will continue to grow.

Achieving an affordable, reliable, and low-carbon future will require innovation across the entire energy value chain – from production to consumption, and, as the world’s leading air conditioning manufacturer, Daikin, is leading the way in developing innovative solutions to achieve optimum comfort and energy savings.

Three things struck me during my recent visit to the Daikin Texas Technology Park (DTTP):

  1. Innovation is at the heart of their operation. The integration of engineering and manufacturing in a single location facilitates collaboration and product innovation and accelerates implementation. The LEED Gold Certified facility was also innovatively designed to maximize energy efficiency and minimize environmental impact.
  2. People are a priority. The diversity of the 8000+ employees working at the DTTP was incredible. During the visit, we had the opportunity to see team members from many different backgrounds and with various skills and education working in all parts of their operation. They also offer a STEM scholarship program in partnership with the Waller Area Chamber of Commerce.
  3. They are environmentally focused. Daikin is fully committed to providing energy solutions that improve quality of life while also reducing environmental impact through improved efficiency. The heating and air conditioning products manufactured at the DTTP are some of the most innovative and energy efficient products on the market today – producing a more even temperature and offering as much as a 30% reduction in energy use compared to standard AC systems, all with a considerably smaller footprint.

As someone who spends a great deal of time thinking about the pathways to solving the global dual challenge of more energy with fewer emissions, much of my time is spent learning about innovations on the supply side of energy. It is exciting to learn that there is just as much innovation happening on the demand side of energy – and to see it happening right here in Houston.

———

This article was written by Jane Stricker, executive director and senior vice president of theGreater Houston Partnership's Houston Energy Transition Initiative and originally ran on the HETI blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

To learn more about Daikin’s entire line of innovative heating and air conditioning products and how they are Perfecting the Air, visit the Daikin global website.

Trending News

A View From HETI

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

Trending News