Daikin is the world’s leading air conditioning and refrigeration company, with its US headquarters and North America manufacturing facility based in Waller, Texas. Photo via htxenergytransition.org

In the energy capital of the world, we often think and talk about the energy transition and low carbon solutions in the context of energy production and distribution – whether it’s adding more renewables to the grid, reducing the CO2 emissions of our existing energy resources with CCUS and Hydrogen, developing energy storage technology to manage intermittency, or deploying other innovative solutions designed to produce or deliver more energy with fewer emissions – Houston is leading on all fronts.

But these aren’t the only solutions needed as we seek to solve one of the most challenging issues of our time. We cannot focus only on innovating the production and distribution of energy. As the demand for energy grows, locally and globally, we must also think innovatively about reducing the demand for energy, while still maintaining, and improving, quality of life. I had the opportunity recently to visit a company that is doing just that, right here in the Houston region.

Daikin is the world’s leading air conditioning and refrigeration company, with their US headquarters and North America manufacturing facility based right here, just 30 minutes northwest of downtown Houston in Waller, Texas. The Daikin Texas Technology Park, a 4.2 million ft2 facility, equal to 74 football fields, is dedicated to developing, manufacturing and marketing innovative solutions for meeting its customers’ needs while also reducing the energy required to keep people cool. Currently, air conditioning accounts for around 10% of global electricity consumption, with rapid demand growth expected in the future. As electrification becomes a key pathway to the decarbonization of various industries, demand for low-carbon power will continue to grow.

Achieving an affordable, reliable, and low-carbon future will require innovation across the entire energy value chain – from production to consumption, and, as the world’s leading air conditioning manufacturer, Daikin, is leading the way in developing innovative solutions to achieve optimum comfort and energy savings.

Three things struck me during my recent visit to the Daikin Texas Technology Park (DTTP):

  1. Innovation is at the heart of their operation. The integration of engineering and manufacturing in a single location facilitates collaboration and product innovation and accelerates implementation. The LEED Gold Certified facility was also innovatively designed to maximize energy efficiency and minimize environmental impact.
  2. People are a priority. The diversity of the 8000+ employees working at the DTTP was incredible. During the visit, we had the opportunity to see team members from many different backgrounds and with various skills and education working in all parts of their operation. They also offer a STEM scholarship program in partnership with the Waller Area Chamber of Commerce.
  3. They are environmentally focused. Daikin is fully committed to providing energy solutions that improve quality of life while also reducing environmental impact through improved efficiency. The heating and air conditioning products manufactured at the DTTP are some of the most innovative and energy efficient products on the market today – producing a more even temperature and offering as much as a 30% reduction in energy use compared to standard AC systems, all with a considerably smaller footprint.

As someone who spends a great deal of time thinking about the pathways to solving the global dual challenge of more energy with fewer emissions, much of my time is spent learning about innovations on the supply side of energy. It is exciting to learn that there is just as much innovation happening on the demand side of energy – and to see it happening right here in Houston.

———

This article was written by Jane Stricker, executive director and senior vice president of theGreater Houston Partnership's Houston Energy Transition Initiative and originally ran on the HETI blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

To learn more about Daikin’s entire line of innovative heating and air conditioning products and how they are Perfecting the Air, visit the Daikin global website.

The inaugural Activate Houston cohort has 11 fellows across energy, materials, life sciences, space, and other sectors. Photo via activate.org

6 energy transition innovators named to inaugural Houston hardtech fellowship cohort

onboarding

A national hardtech-focused organization has named its 2024 batch of innovators, which includes the inaugural Houston-based cohort.

Activate named 62 fellows and 50 companies for is latest class, which spans Berkley, California — where the organization is based, Boston, New York, and Houston. Additionally, Activate Anywhere, the program's virtual and remote cohort, was named. According to Activate, it received over 1,000 applicants.

“People, not ideas alone, move the world forward. It is through the drive and determination of brilliant scientists and engineers that we are witnessing true progress,” says Activate CEO Cyrus Wadia in a news release. “Our current Activate Fellows and alumni are already pioneering innovative solutions that make a measurable difference. We’re thrilled to support the next 62 visionaries who will lead the charge in addressing our most urgent issues through groundbreaking science and technology.”

It's the first year Activate has hosted a Houston-based cohort. The organization initially announced its expansion early last year. The inaugural cohort has 11 fellows across energy, materials, life sciences, space, and other sectors.

The named Houston fellows who are working on energy transition solutions include:

  • Krish Mehta, founder and CEO of Phoenix Materials, a company that decarbonizes concrete using industrial waste.
  • Gabriel Cossio, founder and CEO of Nanoscale Labs, which is developing a high-throughput and low-cost nanomanufacturing system.
  • Matthew McDermott, founder and CEO of Refound Materials, a materials technology company developing more efficient synthesis recipes for accelerated materials discovery.
  • Alec Ajnsztajn, founder and CEO of Coflux Purification, a company that's creating a product that allows industries and water providers to cheaply remove forever chemicals to provide safe drinking water at a fraction of current energy use.
  • Ryan DuChanois and Yang Xia , co-founders of Solidec, a Houston-based startup redefining chemical manufacturing.

The rest of the cohort includes:

  • Meagan Pitcher, co-founder and CEO of Bairitone Health, which brings advanced imaging diagnostics into the home environment.
  • Wei Meng, co-founder and CEO of LumiStrain, a startup offering novel technology for mechanical strain mapping.
  • Sonia Dagan of Atolla Tech, which is developing a lidar and machine-learning algorithm for identifying and quantifying airborne insects.
  • Rodrigo Alvarez-Icaza, founder and CEO of Elysium Robotics, a company that's replacing electric motors with muscle-like actuators to enable massive deployment of highly capable and low-cost robotic systems.
  • Blake Herren, CEO and Co-founder of Raven Space Systems, which is modernizing composite manufacturing with 3D printing and Industry 4.0 solutions to build the factories of the future.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston quantum simulator research reveals clues for solar energy conversion

energy flow

Rice University scientists have used a programmable quantum simulator to mimic how energy moves through a vibrating molecule.

The research, which was published in Nature Communications last month, lets the researchers watch and control the flow of energy in real time and sheds light on processes like photosynthesis and solar energy conversion, according to a news release from the university.

The team, led by Rice assistant professor of physics and astronomy Guido Pagano, modeled a two-site molecule with one part supplying energy (the donor) and the other receiving it (the acceptor).

Unlike in previous experiments, the Rice researchers were able to smoothly tune the system to model multiple types of vibrations and manipulate the energy states in a controlled setting. This allowed the team to explore different types of energy transfer within the same platform.

“By adjusting the interactions between the donor and acceptor, coupling to two types of vibrations and the character of those vibrations, we could see how each factor influenced the flow of energy,” Pagano said in the release.

The research showed that more vibrations sped up energy transfer and opened new paths for energy to move, sometimes making transfer more efficient even with energy loss. Additionally, when vibrations differed, efficient transfer happened over a wider range of donor–acceptor energy differences.

“The results show that vibrations and their environment are not simply background noise but can actively steer energy flow in unexpected ways,” Pagano added.

The team believes the findings could help with the design of organic solar cells, molecular wires and other devices that depend on efficient energy or charge transfer. They could also have an environmental impact by improving energy harvesting to reduce energy losses in electronics.

“These are the kinds of phenomena that physical chemists have theorized exist but could not easily isolate experimentally, especially in a programmable manner, until now,” Visal So, a Rice doctoral student and first author of the study, added in the release.

The study was supported by The Welch Foundation,the Office of Naval Research, the National Science Foundation CAREER Award, the Army Research Office and the Department of Energy.

The EPA is easing pollution rules — here’s how it’s affecting Texas

In the news

The first year of President Trump’s second term has seen an aggressive rollback of federal environmental protections, which advocacy groups fear will bring more pollution, higher health risks, and less information and power for Texas communities, especially in heavily industrial and urban areas.

Within Trump’s first 100 days in office, his new Environmental Protection Agency administrator, Lee Zeldin, announced a sweeping slate of 31 deregulatory actions. The list, which Zeldin called the agency’s “greatest day of deregulation,” targeted everything from soot standards and power plant pollution rules to the Endangerment Finding, the legal and scientific foundation that obligates the EPA to regulate climate-changing pollution under the Clean Air Act.

Since then, the agency froze research grants, shrank its workforce, and removed some references to climate change and environmental justice from its website — moves that environmental advocates say send a clear signal: the EPA’s new direction will come at the expense of public health.

Cyrus Reed, conservation director of the Lone Star Chapter of the Sierra Club, said Texas is one of the states that feels EPA policy changes directly because the state has shown little interest in stepping up its environmental enforcement as the federal government scales back.

“If we were a state that was open to doing our own regulations there’d be less impact from these rollbacks,” Reed said. “But we’re not.”

“Now we have an EPA that isn’t interested in enforcing its own rules,” he added.

Richard Richter, a spokesperson at the state’s environmental agency, Texas Commission on Environmental Quality, said in a statement that the agency takes protecting public health and natural resources seriously and acts consistently and quickly to enforce federal and state environmental laws when they’re violated.

Methane rules put on pause

A major EPA move centers on methane, a potent greenhouse gas that traps heat far more efficiently than carbon dioxide over the short term. It accounts for roughly 16% of global greenhouse gas emissions and is a major driver of climate change. In the U.S., the largest source of methane emissions is the energy sector, especially in Texas, the nation’s top oil and gas producer.

In 2024, the Biden administration finalized long-anticipated rules requiring oil and gas operators to sharply reduce methane emissions from wells, pipelines, and storage facilities. The rule, developed with industry input, targeted leaks, equipment failures, and routine flaring, the burning off of excess natural gas at the wellhead.

Under the rule, operators would have been required to monitor emissions, inspect sites with gas-imaging cameras for leaks, and phase out routine flaring. States are required to come up with a plan to implement the rule, but Texas has yet to do so. Under Trump’s EPA, that deadline has been extended until January 2027 — an 18-month postponement.

Texas doesn’t have a rule to capture escaping methane emissions from energy infrastructure. Richter, the TCEQ spokesperson, said the agency continues to work toward developing the state plan.

Adrian Shelley, Texas director of the watchdog group Public Citizen, said the rule represented a rare moment of alignment between environmentalists and major oil and gas producers.

“I think the fossil fuel industry generally understood that this was the direction the planet and their industry was moving,” he said. Shelley said uniform EPA rules provided regulatory certainty for changes operators saw as inevitable.

Reed, the Sierra Club conservation director, said the delay of methane rules means Texas still has no plan to reduce emissions, while neighboring New Mexico already has imposed its own state methane emission rules that require the industry to detect and repair methane leaks and ban routine venting and flaring.

These regulations have cut methane emissions in the New Mexico portion of the Permian Basin — the oil-rich area that covers West Texas and southeast New Mexico — to half that of Texas, according to a recent data analysis by the Environmental Defense Fund. That’s despite New Mexico doubling production since 2020.

A retreat from soot standards

Fine particulate matter or PM 2.5, one of six pollutants regulated under the Clean Air Act, has been called by researchers the deadliest form of air pollution.

In 2024, the EPA under President Biden strengthened air rules for particulate matter by lowering the annual limit from 12 to 9 micrograms per cubic meter. It was the first update since 2012 and one of the most ambitious pieces of Biden’s environmental agenda, driven by mounting evidence that particulate pollution is linked to premature death, heart disease, asthma, and other respiratory illnesses.

After the rule was issued, 24 Republican-led states, including Kentucky and West Virginia, sued to revert to the weaker standard. Texas filed a separate suit asking to block the rule’s recent expansion.

State agencies are responsible for enforcing the federal standards. The TCEQ is charged with creating a list of counties that exceed the federal standard and submitting those recommendations to Gov. Greg Abbott, who then finalizes the designations and submits them to the EPA.

Under the 9 microgram standard, parts of Texas, including Dallas, Harris (which includes Houston), Tarrant (Fort Worth), and Bowie (Texarkana) counties, were in the process of being designated nonattainment areas — which, when finalized, would trigger a legal requirement for the state to develop a plan to clean up the air.

That process stalled after Trump returned to office. Gov. Greg Abbott submitted his designations to EPA last February, but EPA has not yet acted on his designations, according to Richter, the TCEQ spokesperson.

In a court filing last year, the Trump EPA asked a federal appeals court to vacate the stricter standard, bypassing the traditional notice and comment administrative process.

For now, the rule technically remains in effect, but environmental advocates say the EPA’s retreat undermines enforcement of the rule and signals to polluters that it may be short-lived.

Shelley, with Public Citizen, believes the PM2.5 rule would have delivered the greatest health benefit of any EPA regulation affecting Texas, particularly through reductions in diesel pollution from trucks.

“I still hold out hope that it will come back,” he said.

Unraveling the climate framework

Beyond individual pollutants, the Trump EPA has moved to dismantle the federal architecture for addressing climate change.

Among the proposals is eliminating the Greenhouse Gas Reporting Program, which requires power plants, refineries, and oil and gas suppliers to report annual emissions. The proposal has drawn opposition from both environmental groups and industry, which relies on the data for planning and compliance.

Colin Leyden, Texas state director and energy lead at the nonprofit Environmental Defense Fund, said eliminating the program could hurt Texas industry. If methane emissions are no longer reported, then buyers and investors of natural gas, for example, won’t have an official way to measure how much methane pollution is associated with that gas, according to Leyden. That makes it harder to judge how “clean” or “climate-friendly” the product is, which international buyers are increasingly demanding.

“This isn’t just bad for the planet,” he said. “It makes the Texas industry less competitive.”

The administration also proposed last year rescinding the Endangerment Finding, issued in 2009, which obligates the EPA to regulate climate pollution. Most recently, the EPA said it will stop calculating how much money is saved in health care costs as a result of air pollution regulations that curb particulate matter 2.5 and ozone, a component of smog. Both can cause respiratory and health problems.

Leyden said tallying up the dollar value of lives saved when evaluating pollution rules is a foundational principle of the EPA since its creation.

“That really erodes the basic idea that (the EPA) protects health and safety and the environment,” he said.

___

This story was originally published by The Texas Tribune and distributed through a partnership with The Associated Press.

New report predicts major data center boom in Texas by 2028

data analysis

Data centers are proving to be a massive economic force in Texas.

For instance, a new report from clean energy company Bloom Energy predicts Texas will see a 142 percent increase in its market share for data centers from 2025 to 2028. That would be the highest increase of any state.

Bloom Energy expects Texas to exceed 40 gigawatts of data-center capacity by 2028, representing a nearly 30 percent share of the U.S. market. A typical AI data center consumes 1 to 2 gigawatts of energy.

“Data center and AI factory developers can’t afford delays,” Natalie Sunderland, Bloom Energy’s chief marketing officer, said in the report. “Our analysis and survey results show that they’re moving into power‑advantaged regions where capacity can be secured faster — and increasingly designing campuses to operate independently of the grid.”

“The surge in AI demand creates a clear opportunity for states that can adapt to support large-scale AI deployments at speed,” Sunderland adds.

Further evidence of the data center explosion in Texas comes from ConstructConnect, a provider of data and software for contractors and manufacturers. ConstructConnect reported that in the 12-month span through November 2025, data-center construction starts in Texas accounted for $11 billion in spending. At $12.5 billion, only Louisiana surpassed the Texas total.

Capital expenses for U.S. data centers were expected to surpass $425 billion last year, according to ratings agency S&P Global.

ConstructConnect also reports that Texas is among five states collectively grabbing 80 percent of potential data center construction starts. Currently, Texas hosts around 400 data centers, with close to 60 of them in the Houston market.

A large pool of data-center construction spending in Texas is flowing from Google, which announced in November that it would earmark $40 billion for new AI data centers in the state.

“Texas leads in AI and tech innovation,” Gov. Greg Abbott proclaimed when the Google investment was unveiled.

Other studies and reports lay out just how much data centers are influencing economic growth in the Lone Star State:

  • A study by Texas Royalty Brokers indicates Texas leads the U.S. with 17 clusters of AI data centers. The study measured the density of AI data centers by counting the number of graphics processing units (GPUs) installed in those clusters. GPUs are specialized chips built to run AI models and perform complex calculations.
  • Citing data from construction consulting company FMI, The Wall Street Journal reported that spending on construction of data centers is expected to rise 23 percent in 2026 compared with last year. Much of that construction spending will happen in Texas. In the 12 months through November 2025, the average data center cost $597 million, according to ConstructConnect.
  • Data published in 2025 by commercial real estate services company Cushman & Wakefield shows three Texas markets — Austin, Dallas and San Antonio — boast the lowest construction costs for data centers among the 19 U.S. markets that were analyzed. The mid-range of costs in that trio of markets is roughly $10.65 million per megawatt. Houston isn’t included in the data.

Although Houston isn’t cited in the Cushman & Wakefield data, it nonetheless is playing a major role in the data-center boom. Houston-area energy giants Chevron and ExxonMobil are chasing opportunities to supply natural gas as a power source for data centers, for example.

“As Houston rapidly evolves into a hub for AI, cloud computing, and data infrastructure, the city is experiencing a surge in data-center investments driven by its unique position at the intersection of energy, technology, and innovation,” says the Greater Houston Partnership.