M&A moves

Dallas-area business to acquire Houston renewable energy co.

Houston renewables company Proteus Power is getting acquired. Photo via

Houston-based developer of utility-scale renewable energy Proteus Power is being acquired by JBB Advanced Technologies for an undisclosed amount after founder, chairman, and CEO, John B. Billingsley signed a letter of intent to purchase.

"I know the potential of renewable energy, both for our country and for the small landowners and communities we work with," Billingsley says in a news release. "Proteus Power is just the type of company I have known and grown in the past, and we're perfectly positioned to make it a very profitable company for our investors. In the near term, this very substantial business will provide a multi-billion-dollar boost to the Texas economy, from Lubbock to Midland, across West Texas and down to the Gulf Coast."

Proteus Power currently incorporates a total of 15.5 gigawatts of utility-scale renewable energy projects, which include utility-scale solar and battery energy storage systems. Nearly 5 gigawatts of both utility-scale solar and battery energy storage should be developed at an estimated EPC (Engineering, Procurement, and Construction) cost of $3.38 billion over the next four years.

Proteus Power projects also include multiple independent system operators: ERCOT West, ERCOT Houston, ERCOT North, ERCOT South, Miso LA/MS, Miso Illinois, Miso Texas, and SPP South.

Billingsley, who launched one of the nation's largest renewable energy companies, Tri Global Energy, with the purchase of Proteus Power, continues JBB’s efforts for “clean, affordable solar energy systems to commercial concerns” according to the company.

Proteus Power headquarters in Houston will move to JBB Advanced Technologies' headquarters in Carrollton, Texas, with all current employees being retained, pending the final acquisition, which is expected in the fourth quarter of 2024.A branch office is also planned to be located in Lubbock, Texas.

"The Proteus Power development team is clearly among the best in the renewable industry today," Billingsley adds. "The company has thrived under the leadership of Chief Development Officer Dan Phillips, and we at JBBAT are fortunate to inherit such a strong team to work with us as we move forward to jump back in the energy transition."

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News