M&A moves

Dallas-area business to acquire Houston renewable energy co.

Houston renewables company Proteus Power is getting acquired. Photo via

Houston-based developer of utility-scale renewable energy Proteus Power is being acquired by JBB Advanced Technologies for an undisclosed amount after founder, chairman, and CEO, John B. Billingsley signed a letter of intent to purchase.

"I know the potential of renewable energy, both for our country and for the small landowners and communities we work with," Billingsley says in a news release. "Proteus Power is just the type of company I have known and grown in the past, and we're perfectly positioned to make it a very profitable company for our investors. In the near term, this very substantial business will provide a multi-billion-dollar boost to the Texas economy, from Lubbock to Midland, across West Texas and down to the Gulf Coast."

Proteus Power currently incorporates a total of 15.5 gigawatts of utility-scale renewable energy projects, which include utility-scale solar and battery energy storage systems. Nearly 5 gigawatts of both utility-scale solar and battery energy storage should be developed at an estimated EPC (Engineering, Procurement, and Construction) cost of $3.38 billion over the next four years.

Proteus Power projects also include multiple independent system operators: ERCOT West, ERCOT Houston, ERCOT North, ERCOT South, Miso LA/MS, Miso Illinois, Miso Texas, and SPP South.

Billingsley, who launched one of the nation's largest renewable energy companies, Tri Global Energy, with the purchase of Proteus Power, continues JBB’s efforts for “clean, affordable solar energy systems to commercial concerns” according to the company.

Proteus Power headquarters in Houston will move to JBB Advanced Technologies' headquarters in Carrollton, Texas, with all current employees being retained, pending the final acquisition, which is expected in the fourth quarter of 2024.A branch office is also planned to be located in Lubbock, Texas.

"The Proteus Power development team is clearly among the best in the renewable industry today," Billingsley adds. "The company has thrived under the leadership of Chief Development Officer Dan Phillips, and we at JBBAT are fortunate to inherit such a strong team to work with us as we move forward to jump back in the energy transition."

Trending News

A View From HETI

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Trending News