Guest column

Hydrogen's many colors, Houston companies that are focused on it, and more

Blue, green, gold — what do all the colors of hydrogen even mean? Photo via Getty Images

Repeated association of specific colors in defined contexts deeply reinforces themes in the human brain. It’s why most students and alumni of Texas A&M University scoff at the sight of burnt orange, and you’d be hard-pressed to find the home of a Longhorn adorned in shades of crimson or maroon.

The color-coding of hydrogen energy production exemplifies one such ambiguous classification methodology, as the seemingly innocuous labeling of hydrogen as green (for hydrogen produced from renewable sources) and black (for hydrogen produced from coal) initially helped to quickly discern which sources of hydrogen are environmentally friendly or not.

But the coding system quickly became more complicated, as the realization that hydrogen extracted from natural gas (aka grey hydrogen) or coal (again, black hydrogen, or sometimes, brown hydrogen, depending on the carbon content and energy density of the source coal) could be extracted in a less harmful way, by introducing methods of carbon capture and storage.

These cleaner methods for hydrogen extraction earned the lofty color coding of blue, just one shade away from green in the rainbow spectrum and a safe distance from the less delightful and inspiring colors grey, brown, and black.

Then along came pyrolysis — a method for producing hydrogen through methane cracking, plainly, the decomposition of methane, CH4, into solid carbon and hydrogen gas, without the introduction of oxygen. This method results in significantly less (if any) creation of carbon dioxide as a by-product. Logic would lead one to categorize this process with a color that lies further away from black than exalted cousin, green hydrogen.

However, the solid carbon that remains after pyrolysis retains over one-third of the original energy available from methane and could tip the GHG scales negatively if not utilized in an environmentally responsible manner, so it’s not a clear-cut winner in the game of lower-carbon energy production. Thus, it is nestled between green and blue and often referred to as “turquoise hydrogen” production.

Other hydrogen production methods — pink, purple, and red — defy rainbow logic as they have all proven to result in higher GHG emissions than the original “clean” queen, green hydrogen, despite following a similar electrolysis process to separate hydrogen and oxygen from one another in its original composition as water. The source of electricity used in the electrolysis process determines the color-code here, as pink hydrogen is generated from nuclear power, red hydrogen is generated from nuclear thermal power, and purple hydrogen is generated from a combination of nuclear power and nuclear thermal power.

Yellow hydrogen seems to not yet have found a clear definition. Some argue it refers to green hydrogen produced exclusively from solar-powered electrolysis, while others claim it to be the child of mixed green/gray hydrogen. Artists should probably keep a far distance from this conversation, unless the energy produced from the steam coming out of their ears could perform electrolysis more cleanly than any of the green hydrogen solutions.

Finally, we have white hydrogen, the naturally occurring, zero-carbon emitting, plentiful element found in the earth’s crust – which is also the least understood of all the hydrogen extraction methodologies.

Remember, hydrogen is the first element in the periodic table, meaning it’s density is very low. Hydrogen knows no bounds, and once it escapes from its natural home, it either floats off into outer space or attaches itself to another element to form a more containable compound, like water.

Many believe white hydrogen to be the unquestionable solution to a lower-carbon energy future but there is still much to be understood. Capturing, storing, and transporting white hydrogen remain mostly theoretical, despite recent progress, which includes one recently announced Houston lab dedicated to hydrogen transport. Another Houston company, Syzygy has raised millions with its light-based catalyst for hydrogen production.

For example, Cemvita, a local Houston chemical manufacturing company, predicts a future powered by gold hydrogen: white hydrogen sourced from depleted oil and gas wells. Many wildcatters believe strongly in a new era of exploration for white hydrogen using techniques refined in oil and gas exploration, including reservoir analysis, drilling, and fracking.

Without a doubt, investigating further the various hydrogen extraction theories is surely a craveable new challenge for the sciences. But perhaps the current color-coding nomenclature for hydrogen needs refinement, as well.

Unless used in the scientific context of wavelength, color-based labels represent an ambiguous classification tool, as the psychology of color depends on modern societal norms. The association of colors with the various hydrogen production methodologies does very little to distinguish the climate impact each method produces. Additionally, the existing categorizations do not consider any further distribution or processing of the produced hydrogen — a simple fact that could easily negate any amount of cleanliness implied by the various production methods — and a topic for a future article.

For now, hydrogen represents one of the front-running sources for a lower-carbon energy future, but it’s up to you if that’s best represented by a blue ribbon, gold medal, white star, or cold-hard greenbacks.

------

Lindsey Ferrell is a contributing writer to EnergyCapitalHTX and founder of Guerrella & Co.

Trending News

A View From HETI

ExxonMobil says it will "slow the pace" of development of its $10 billion plastics manufacturing plant. Photo via Getty Images.

Editor's note: The top energy transition news for Oct. 15-31 includes AI integration among energy leaders and the most promising startups from an annual pitch competition. Here are the most-read EnergyCapitalHTX stories for the second half of October:

1. 2 Houston energy giants appear on Fortune’s inaugural AI ranking

ExxonMobil is on Fortune's first-ever AIQ ranking. Getty Images

Two Houston-area energy leaders appear on Fortune’s inaugural list of the top adopters of AI among Fortune 500 companies. They are: No. 7 energy company ExxonMobil, based in Spring and No. 47 energy company Chevron, based in Houston. They are joined by Spring-based tech company Hewlett Packard Enterprise, No. 19. All three companies have taken a big dive into the AI pool. Continue reading.

2. Energy Tech Nexus names 8 startup winners from Pilotathon pitch event

Eight startups were given awards at Energy Tech Nexus' Pilotathon. Photo via Getty Images.

Energy Tech Nexus held its Pilotathon and Showcase during the second annual Houston Energy & Climate Startup Week last month and granted awards to eight startups. This year's event, focused on the theme "Energy Access and Resilience," offered 24 startups an opportunity to pitch their pilot projects. Continue reading.

3. Houston organization proposes Gulf Coast index for hydrogen market

The Clean Hydrogen Buyers Alliance plans to create the Gulf Coast Hydrogen Index to bring to bring transparency and confidence to hydrogen pricing. Photo via Getty Images

The Clean Hydrogen Buyers Alliance has proposed an index aimed at bringing transparency to pricing in the emerging hydrogen market. The Houston-based alliance said the Gulf Coast Hydrogen Index, based on real-time data, would provide more clarity to pricing in the global market for hydrogen. The benchmarking effort is being designed to benefit clean hydrogen buyers, sellers and investors. The index would help position the U.S. “as the trading anchor for hydrogen’s next chapter as a globally traded commodity,” the alliance said. Continue reading.

4. Houston clean energy company to develop hybrid renewable project in Port Arthur

The new Pleasure Island Power Collective in Port Arthur is expected to generate 391 megawatts of clean power. Photo via unsplash.

Houston-based clean energy company Diligence Offshore Services has announced a strategic partnership with Florida-based floating solar manufacturing company AccuSolar for the development of a renewable energy project in the Port Arthur area. Known as the Pleasure Island Power Collective, it will be built on 2,275 acres across Pleasure Island and Sabine Lake. It is expected to generate 391 megawatts of clean power, alongside a utility-scale battery energy storage system. Continue reading.

5. Port Houston reports emissions progress as cargo volumes climb

Ric Campo says Port Houston is “moving in the right direction.” Photo via Getty Images.

Port Houston’s initiatives to reduce emissions have shown some positive results, according to new data from the Port of Houston Authority. Pulling from the Goods Movement Emissions Inventory (GMEI) report, which tracks port-related air emissions, Port Houston cited several improvements compared to the most recent report from 2019. Continue reading.

Trending News