The facility in Baytown is expected to produce 28.3 million cubic meters of low-carbon hydrogen daily. Photo via exxonmobil.com

ExxonMobil selected Australia-based engineering and professional services company Worley to provide engineering, procurement and construction services for a proposed hydrogen and ammonia production facility in Baytown, which is expected to have a production capacity of 1 billion cubic feet of blue hydrogen per day. ExxonMobil expects the facility will be the largest of its kind in the world.

“We are delighted to continue our strategic, global relationship with ExxonMobil in its execution of upcoming projects, particularly in delivering this EPC project on the US Gulf Coast, which contributes significantly to strengthening Worley’s backlog,” Chris Ashton, CEO of Worley, states, according to Offshore Energy.

The facility in Baytown is expected to produce 28.3 million cubic meters (1 billion cubic feet) of low-carbon hydrogen daily and nearly 1 million metric tonnes (more than 1 million tons) of ammonia per year, which will also capture more than 98 percent of the associated CO2 emissions.

The facility will leverage advanced carbon capture and storage technologies to reduce emissions associated with hydrogen production. ExxonMobile also said its carbon capture and storage system would be available for use by third-party CO2 emitters in the area.

A final investment decision is expected in 2025 , and an anticipated startup in 2029. “Blue” hydrogen is expected to be a top energy driver in 2025 according to global consultancy Wood Mackenzie who predicts that at least three large-scale blue hydrogen projects in the U.S will reach FID by next year.

The company hopes the new facility will help in creating U.S. jobs and supporting community development initiatives throughout the Houston area, and the state.

The new initiative will take stranded natural gas and turn it into hydrogen. Photo via Getty Images

New York financial firm partners with Houston O&G co. to turn natural gas into blue hydrogen

teamwork

A new partnership between an energy and sustainability investor and a Houston-based company that focuses on cleaner solutions in the oil and gas industry will look into turning stranded natural gas into blue hydrogen.

New York-based Double Zero Holdings and SJ Environmental announced their new partnership this week in an effort to move forward the energy transition. According to the companies, stranded natural gas — mostly methane — usually remains unused where it is not economically viable to transport. By turning these gasses into into blue hydrogen, "the partnership mitigates methane and CO2 emissions while producing hydrogen—a clean fuel that could revolutionize multiple industries," reads the news release.

The initiative will use existing technologies, which can be reduced to the size of a standard shipping container, per the release.

"We're thrilled to partner with SJ Environmental to tackle one of the most pressing environmental issues today," Raja Ramachandran, managing partner of Double Zero Holdings, says in the release. "This collaboration allows us to turn stranded natural gas—a significant environmental liability—into a valuable resource, supporting the global shift toward cleaner energy."

The plan is to lower the amount of natural gas left wasted and provide a low-carbon alternative across transportation, manufacturing, and power generation.

"Our collaboration with Double Zero Holdings reflects our commitment to innovative, sustainable solutions," SJ Environmental Director John Chappell adds. "Together, we're setting a new standard for energy production, delivering hydrogen and food-grade CO₂ where natural gas would typically be flared."

Blue, green, gold — what do all the colors of hydrogen even mean? Photo via Getty Images

Hydrogen's many colors, Houston companies that are focused on it, and more

Guest column

Repeated association of specific colors in defined contexts deeply reinforces themes in the human brain. It’s why most students and alumni of Texas A&M University scoff at the sight of burnt orange, and you’d be hard-pressed to find the home of a Longhorn adorned in shades of crimson or maroon.

The color-coding of hydrogen energy production exemplifies one such ambiguous classification methodology, as the seemingly innocuous labeling of hydrogen as green (for hydrogen produced from renewable sources) and black (for hydrogen produced from coal) initially helped to quickly discern which sources of hydrogen are environmentally friendly or not.

But the coding system quickly became more complicated, as the realization that hydrogen extracted from natural gas (aka grey hydrogen) or coal (again, black hydrogen, or sometimes, brown hydrogen, depending on the carbon content and energy density of the source coal) could be extracted in a less harmful way, by introducing methods of carbon capture and storage.

These cleaner methods for hydrogen extraction earned the lofty color coding of blue, just one shade away from green in the rainbow spectrum and a safe distance from the less delightful and inspiring colors grey, brown, and black.

Then along came pyrolysis — a method for producing hydrogen through methane cracking, plainly, the decomposition of methane, CH4, into solid carbon and hydrogen gas, without the introduction of oxygen. This method results in significantly less (if any) creation of carbon dioxide as a by-product. Logic would lead one to categorize this process with a color that lies further away from black than exalted cousin, green hydrogen.

However, the solid carbon that remains after pyrolysis retains over one-third of the original energy available from methane and could tip the GHG scales negatively if not utilized in an environmentally responsible manner, so it’s not a clear-cut winner in the game of lower-carbon energy production. Thus, it is nestled between green and blue and often referred to as “turquoise hydrogen” production.

Other hydrogen production methods — pink, purple, and red — defy rainbow logic as they have all proven to result in higher GHG emissions than the original “clean” queen, green hydrogen, despite following a similar electrolysis process to separate hydrogen and oxygen from one another in its original composition as water. The source of electricity used in the electrolysis process determines the color-code here, as pink hydrogen is generated from nuclear power, red hydrogen is generated from nuclear thermal power, and purple hydrogen is generated from a combination of nuclear power and nuclear thermal power.

Yellow hydrogen seems to not yet have found a clear definition. Some argue it refers to green hydrogen produced exclusively from solar-powered electrolysis, while others claim it to be the child of mixed green/gray hydrogen. Artists should probably keep a far distance from this conversation, unless the energy produced from the steam coming out of their ears could perform electrolysis more cleanly than any of the green hydrogen solutions.

Finally, we have white hydrogen, the naturally occurring, zero-carbon emitting, plentiful element found in the earth’s crust – which is also the least understood of all the hydrogen extraction methodologies.

Remember, hydrogen is the first element in the periodic table, meaning it’s density is very low. Hydrogen knows no bounds, and once it escapes from its natural home, it either floats off into outer space or attaches itself to another element to form a more containable compound, like water.

Many believe white hydrogen to be the unquestionable solution to a lower-carbon energy future but there is still much to be understood. Capturing, storing, and transporting white hydrogen remain mostly theoretical, despite recent progress, which includes one recently announced Houston lab dedicated to hydrogen transport. Another Houston company, Syzygy has raised millions with its light-based catalyst for hydrogen production.

For example, Cemvita, a local Houston chemical manufacturing company, predicts a future powered by gold hydrogen: white hydrogen sourced from depleted oil and gas wells. Many wildcatters believe strongly in a new era of exploration for white hydrogen using techniques refined in oil and gas exploration, including reservoir analysis, drilling, and fracking.

Without a doubt, investigating further the various hydrogen extraction theories is surely a craveable new challenge for the sciences. But perhaps the current color-coding nomenclature for hydrogen needs refinement, as well.

Unless used in the scientific context of wavelength, color-based labels represent an ambiguous classification tool, as the psychology of color depends on modern societal norms. The association of colors with the various hydrogen production methodologies does very little to distinguish the climate impact each method produces. Additionally, the existing categorizations do not consider any further distribution or processing of the produced hydrogen — a simple fact that could easily negate any amount of cleanliness implied by the various production methods — and a topic for a future article.

For now, hydrogen represents one of the front-running sources for a lower-carbon energy future, but it’s up to you if that’s best represented by a blue ribbon, gold medal, white star, or cold-hard greenbacks.

------

Lindsey Ferrell is a contributing writer to EnergyCapitalHTX and founder of Guerrella & Co.

Scott Nyquist debates both sides of the hydrogen argument in this week’s ECHTX Voices of Energy guest column. Photo courtesy of Aramco.

Will 2023 be hydrogen’s year?

GUEST COLUMN

Yes and no.

Yes, because there is real money, and action, behind it.

Globally, there are 600 projects on the books to build electrolyzers, which separate the oxygen and hydrogen in water, and are critical to creating low-emissions “green hydrogen.” That investment could drive down the cost of low-emissions hydrogen, making it cost competitive with conventional fuels—a major obstacle to its development so far.

In addition, oil companies are interested, too. The industry already uses hydrogen for refining; many see hydrogen as supplemental to their existing operations and perhaps, eventually, supplanting them. In the meantime, it helps them to decarbonize their refining and petrochemical operations, which most of the majors have committed to doing.

Indeed, hydrocarbon-based companies and economies could have a big opportunity in “blue hydrogen,” which uses fossil fuels for production, but then captures and stores emissions. (“Green hydrogen” uses renewables; because it is expensive to produce, it is more distant than blue. “Gray hydrogen” uses fossil fuels, without carbon capture; this accounts for most current production and use.) Oil and gas companies have a head start on related infrastructure, such as pipelines and carbon capture, and also see new business opportunities, such as low-carbon ammonia.

Houston, for example, which likes to call itself the "energy capital of the world,” is going big on hydrogen. The region is well suited to this. It has an extensive pipeline infrastructure, an excellent port system, a pro-business culture, and experience. The Greater Houston Partnership and McKinsey—both of whom I am associated with—estimate that demand for hydrogen will grow 6 to 8 percent a year from 2030 to 2050. No wonder Houston wants a piece of that action.

There are promising, near-term applications for hydrogen, such as ammonia, cement, and steel production, shipping, long-term energy storage, long-haul trucking, and aviation. These bits and pieces add up: steel alone accounts for about 8 percent of global carbon-dioxide emissions. Late last year, Airbus announced it is developing a hydrogen-powered fuel cell engine as part of its effort to build zero-emission aircraft. And Cummins, a US-based engine company, is investing serious money in hydrogen for trains and commercial and industrial vehicles, where batteries are less effective; it already has more than 500 electrolyzers at work.

Then there is recent US legislation. The Infrastructure, Investment and Jobs Act (IIJA) of 2021 allocated $9.5 billion funding for hydrogen. Much more important, though, was last year’s Inflation Reduction Act, which contains generous tax credits to promote hydrogen production. The idea is to narrow the price gap between clean hydrogen and other, more emissions-intensive technologies; in effect, the law seeks to fundamentally change the economics of hydrogen and could be a true game-changer.

This is not without controversy: some Europeans think this money constitutes subsidies that are not allowed under trade rules. For its part, Europe has the hydrogen bug, too. Its REPowerEU plan is based on the idea of “hydrogen-ready infrastructure,” so that natural gas projects can be converted to hydrogen when the technology and economics make sense.

So there is a lot of momentum behind hydrogen, bolstered by the ambitious goals agreed to at the most recent climate conference in Egypt. McKinsey estimates that hydrogen demand could reach 660 million tons by 2050, which could abate 20 percent of total emissions. Total planned production for lower-emission green and blue hydrogen through 2030 has reached more than 26 million metric tons annually—quadruple that of 2020.

No, because major issues have not been figured out.

The plans in the works, while ambitious, are murky. A European official, asked about the REPowerEU strategy, admitted that “it’s not clear how it will work.” The same can be said of the United States. The hydrogen value chain, particularly for green hydrogen, requires a lot of electricity, and that calls for flexible grids and much greater capacity. For the United States to reach its climate goals, the grid needs to grow an estimated 60 percent by 2030.That is not easy: just try siting new transmission lines and watch the NIMBY monsters emerge.

Permitting can be a nightmare, often requiring separate approvals from local, state, interstate, and federal authorities, and from different authorities for each (air, land, water, endangered species, and on and on); money does not solve this. Even a state like Texas, which isn’t allergic to fossil fuels and has a relatively light regulatory touch, can get stuck in permitting limbo. Bill Gates recently noted that “over 1,000 gigawatts worth of potential clean energy projects [in the United States] are waiting for approval—about the current size of the entire U.S. grid—and the primary reason for the bottleneck is the lack of transmission.”

Then there is the matter of moving hydrogen from production site to market. Pipeline networks are not yet in place and shifting natural gas pipelines to hydrogen is a long way off. Liquifying hydrogen and transporting is expensive. In general, because hydrogen is still a new industry, it faces “chicken or egg” problems that are typical of the difficulties big innovations face, such as connecting hydrogen buyers to hydrogen producers and connecting carbon emitters to places to store the carbon dioxide. These challenges add to the complexity of getting projects financed.

Finally, there is money. McKinsey estimates that getting on track to that 600 million tons would require investment of $950 billion by 2030; so far, $240 billion has been announced.

Where I stand: in the middle.

I believe in hydrogen’s potential. More than 3 years ago, I wrote about hydrogen, arguing that while there had been real progress, “many things need to happen, in terms of policy, finance, and infrastructure, before it becomes even a medium-sized deal.” Now, some of those things are happening.

So, I guess I land somewhere in the middle. I think 2023 will see real progress, in decarbonizing refining and petrochemicals operations and producing ammonia, specifically. I am also optimistic that a number of low-emissions electrolysis projects will move ahead. And while such advances might seem less than transformative, they are critical: hydrogen, whether blue or green, needs to prove itself, and 2023 could be the year it does.

Because I take hydrogen’s potential seriously, though, I also see the barriers. If it is to become the big deal its supporters believe it could be, that requires big money, strong engineering and construction project management, sustained commitment, and community support. It’s easy to proclaim the wonders of the hydrogen economy; it’s much more difficult to devise sensible business models, standardized contracts, consistent incentives, and a regulatory system that doesn’t drive producers crazy. But all this matters—a lot.

My conclusion: there will be significant steps forward in 2023—but take-off is still years away.

------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New report rates best electric companies and renewable energy plans

energy plans

Choose Texas Power—a marketplace that allows users to view and compare electricity plans, providers and rates in the state—has compiled its Best Texas Electric Companies report.

The data-driven list considers pricing, providers and consumer trends, and rates for companies listed on its marketplace. The report was updated earlier this month.

Choose Texas Power rated the Texas energy companies using its proprietary data and online reviews, and gave each company a score from zero to five based on customer service, accessibility and plan variety.

Houston-based Express Energy tied for first place on the list with DFW-based TXU Energy, 4Change Energy and Veteran Energy. Eight other Houston-area companies made the 10. The companies all received a rating of 5 out of 5.

The full list includes:

  • Houston-based Gexa Energy (4.9)
  • Irving-based TriEagle Energy (4.9)
  • Houston-based Frontier Utilities (4.8)
  • Spring-based Atlantex Power (4.6)
  • Houston-based Rhythm Energy (4.6)
  • Houston-based Green Mountain Energy (4.5)
  • Houston-based Reliant Energy (4.3)
  • Houston-based Direct Energy (4.2)
  • Houston-based APG&E Energy (4.2)
  • Houston-based Discount Power (4)
  • Plano-based Cirro Energy (4)
  • Fort Worth-based Payless Power (3.9)

Choose Texas Power also broke down the best companies for specific customer needs.

  • Best for affordable green energy: Gexa Energy
  • Best for 100% renewable energy: Rhythm Energy
  • Green energy plans for low usage: Green Mountain Energy
  • Best for smart home upgrades: Discount Power
  • Best for straightforward energy plans: TriEagle Energy
  • Best for plan variety: TXU Energy
  • Best for simple contract terms: Express Energy

Find the full report here.

Chevron names latest cohort of energy transition fellows at Rice University

energy fellowship

Chevron and Rice University have named 10 graduate students to the second cohort of the Chevron Energy Graduate Fellowship.

The students come from various departments at Rice and are working on innovations that reduce emissions or improve upon low-carbon technology. Fellows will each receive a $10,000 award to support their research along with the opportunity to connect with "industry experts who can provide valuable insight on scaling technologies from the lab to commercial application," according to Rice.

The fellows will present projects during a cross-university virtual symposium in the spring.

The 2025-26 Chevron Energy Graduate Fellows and their research topics include:

  • Cristel Carolina Brindis Flores, Molecular Simulations of CO₂ and H₂ for Geostorage
  • Davide Cavuto, Intensification of Floating Catalyst Chemical Vapor Deposition for Carbon Nanotubes Synthesis
  • Jaewoo Kim, Distributed Acoustic Sensing for In-situ Stress Monitoring in Enhanced Geothermal Systems
  • Jessica Hema Persaud, Understanding Tin Perovskite Crystallization Dynamics for All-Perovskite Tandems
  • Johanna Ikabu Bangala, Upcycling Methane-derived Zero-Valent Carbon for Sustainable Agriculture
  • Kashif Liaqat, From Waste to Resource: Increased Sustainability Through Hybrid Waste Heat Recovery Systems for Data Centers and Industry
  • Md Abid Shahriar Rahman Saadi, Advancing Sustainable Structural, Energy and Food Systems through Engineering of Biopolymers
  • Ratnika Gupta, Micro-Silicon/Carbon Nanotube Composite Anodes with Metal-free Current Collector for High Performance Li-Ion Batteries
  • Wei Ping Lam, Electrifying Chemical Manufacturing: High-Pressure Electrochemical CO₂ Capture and Conversion
  • William Schmid, Light-Driven Thermal Desalination Using Transient Solar Illumination

“Through this fellowship program, we can support outstanding graduate students from across the university who are conducting cutting-edge research across a variety of fields,” Carrie Masiello, director of the Rice Sustainability Institute, said in a news release. “This year, our 2026 Chevron Fellows are working on research that reflects the diversity of the sustainability research at Rice … and these scholarly endeavors exemplify the breadth and depth of research enabled by Chevron’s generous support.”

The Chevron Fellows program launched at Rice last year, naming 10 graduate students to the inaugural cohort. It is funded by Chevron and was created through a partnership between the Rice Sustainability Institute. Chevron launched a similar program at the University of Houston in 2023.

“Rice University continues to be an exceptional partner in advancing energy innovation,” Chris Powers, director of exploration commercial and portfolio at Chevron, added in the release. “The Chevron Energy Fellows program showcases the brilliance and drive of Rice graduate students, whose research in areas like carbon conversion, solar materials and geothermal sensing is already shaping the future of sustainable energy. We’re proud to celebrate their achievements and look forward to the impact they’ll continue to make across the energy landscape.”

Houston clean energy company to develop hybrid renewable project in Port Arthur

power project

Houston-based clean energy company Diligence Offshore Services has announced a strategic partnership with Florida-based floating solar manufacturing company AccuSolar for the development of a renewable energy project in the Port Arthur area.

Known as the Pleasure Island Power Collective, it will be built on 2,275 acres across Pleasure Island and Sabine Lake. It is expected to generate 391 megawatts of clean power, alongside a utility-scale battery energy storage system. It will also feature a 225-megawatt coastal onshore wind farm, with energy produced on-site used to power a data center for adaptive superintelligence, making it entirely self-sustained by renewable sources, according to the company.

AccuSolar will design and manufacture the project and power will be distributed through the Canaan Energy Corridor

“We are incredibly proud to partner with a fellow U.S. company like AccuSolar,” Harry C. Crawford III, founder and managing member of Diligence Offshore, said in a news release. “Their expertise in American manufacturing and floating solar technology is essential to the success of the Pleasure Island Power Collective.”

The project is expected to bring economic growth and a significant number of manufacturing jobs to the area during the construction phase and long-term operations.

Diligence Offshore is pursuing a DPA Title 1 DX rating under the Defense Production Act to help advance the project's development schedule, according to the release, which could lead to immediate manufacturing jobs.

“This partnership not only strengthens our domestic supply chain but also accelerates our vision to bring economic freedom and climate resilience to the Gulf Coast,” Crawford added in the release.