Blue, green, gold — what do all the colors of hydrogen even mean? Photo via Getty Images

Repeated association of specific colors in defined contexts deeply reinforces themes in the human brain. It’s why most students and alumni of Texas A&M University scoff at the sight of burnt orange, and you’d be hard-pressed to find the home of a Longhorn adorned in shades of crimson or maroon.

The color-coding of hydrogen energy production exemplifies one such ambiguous classification methodology, as the seemingly innocuous labeling of hydrogen as green (for hydrogen produced from renewable sources) and black (for hydrogen produced from coal) initially helped to quickly discern which sources of hydrogen are environmentally friendly or not.

But the coding system quickly became more complicated, as the realization that hydrogen extracted from natural gas (aka grey hydrogen) or coal (again, black hydrogen, or sometimes, brown hydrogen, depending on the carbon content and energy density of the source coal) could be extracted in a less harmful way, by introducing methods of carbon capture and storage.

These cleaner methods for hydrogen extraction earned the lofty color coding of blue, just one shade away from green in the rainbow spectrum and a safe distance from the less delightful and inspiring colors grey, brown, and black.

Then along came pyrolysis — a method for producing hydrogen through methane cracking, plainly, the decomposition of methane, CH4, into solid carbon and hydrogen gas, without the introduction of oxygen. This method results in significantly less (if any) creation of carbon dioxide as a by-product. Logic would lead one to categorize this process with a color that lies further away from black than exalted cousin, green hydrogen.

However, the solid carbon that remains after pyrolysis retains over one-third of the original energy available from methane and could tip the GHG scales negatively if not utilized in an environmentally responsible manner, so it’s not a clear-cut winner in the game of lower-carbon energy production. Thus, it is nestled between green and blue and often referred to as “turquoise hydrogen” production.

Other hydrogen production methods — pink, purple, and red — defy rainbow logic as they have all proven to result in higher GHG emissions than the original “clean” queen, green hydrogen, despite following a similar electrolysis process to separate hydrogen and oxygen from one another in its original composition as water. The source of electricity used in the electrolysis process determines the color-code here, as pink hydrogen is generated from nuclear power, red hydrogen is generated from nuclear thermal power, and purple hydrogen is generated from a combination of nuclear power and nuclear thermal power.

Yellow hydrogen seems to not yet have found a clear definition. Some argue it refers to green hydrogen produced exclusively from solar-powered electrolysis, while others claim it to be the child of mixed green/gray hydrogen. Artists should probably keep a far distance from this conversation, unless the energy produced from the steam coming out of their ears could perform electrolysis more cleanly than any of the green hydrogen solutions.

Finally, we have white hydrogen, the naturally occurring, zero-carbon emitting, plentiful element found in the earth’s crust – which is also the least understood of all the hydrogen extraction methodologies.

Remember, hydrogen is the first element in the periodic table, meaning it’s density is very low. Hydrogen knows no bounds, and once it escapes from its natural home, it either floats off into outer space or attaches itself to another element to form a more containable compound, like water.

Many believe white hydrogen to be the unquestionable solution to a lower-carbon energy future but there is still much to be understood. Capturing, storing, and transporting white hydrogen remain mostly theoretical, despite recent progress, which includes one recently announced Houston lab dedicated to hydrogen transport. Another Houston company, Syzygy has raised millions with its light-based catalyst for hydrogen production.

For example, Cemvita, a local Houston chemical manufacturing company, predicts a future powered by gold hydrogen: white hydrogen sourced from depleted oil and gas wells. Many wildcatters believe strongly in a new era of exploration for white hydrogen using techniques refined in oil and gas exploration, including reservoir analysis, drilling, and fracking.

Without a doubt, investigating further the various hydrogen extraction theories is surely a craveable new challenge for the sciences. But perhaps the current color-coding nomenclature for hydrogen needs refinement, as well.

Unless used in the scientific context of wavelength, color-based labels represent an ambiguous classification tool, as the psychology of color depends on modern societal norms. The association of colors with the various hydrogen production methodologies does very little to distinguish the climate impact each method produces. Additionally, the existing categorizations do not consider any further distribution or processing of the produced hydrogen — a simple fact that could easily negate any amount of cleanliness implied by the various production methods — and a topic for a future article.

For now, hydrogen represents one of the front-running sources for a lower-carbon energy future, but it’s up to you if that’s best represented by a blue ribbon, gold medal, white star, or cold-hard greenbacks.

------

Lindsey Ferrell is a contributing writer to EnergyCapitalHTX and founder of Guerrella & Co.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston renewables developer powers two new California solar parks

now open

EDP Renewables North America LLC, a Houston-based developer, owner, and operator of renewable energy projects, has unveiled a solar energy park in California whose customers are Houston-based Shell Energy North America and the Eureka, California-based Redwood Coast Energy Authority.

Sandrini I & II Solar Energy Park, located near Bakersfield, is capable of supplying 300 megawatts of power. The park was completed in two phases.

“Sandrini I & II represent EDP Renewables’ continued commitment to investing in California and are a direct contribution to California's admirable target of achieving 100 percent clean electricity by 2045,” says Sandhya Ganapathy, CEO of EDP. “The Golden State is known for its leadership in solar energy, and EDP Renewables is elated to meet the growing demand for reliable clean energy sources.”

Shell signed a 15-year deal to buy power from the 200-megawatt Sandrini I, and the Redwood Coast Energy Authority signed a 15-year deal to buy power from the 100-megawatt Sandrini II.

In July, EDP announced the opening of the 210-megawatt Pearl River Solar Park in Mississippi. Earlier in 2024, the company debuted the 175-megawatt Crooked Lake Solar Park in Arkansas and the 74-megawatt Misenheimer Solar Park in North Carolina. Click here to read more.

Houston climatech incubator names new CFO

onboarding

Greentown Labs, a climatech incubator with locations in Houston and Somerville, Massachusetts, has hired Naheed Malik as its chief financial officer. In her new role, she oversees finance, accounting and human resources.

Malik previously worked at American Tower Corp., an owner of wireless communication towers. During her 12-year tenure there, she was vice president of financial planning and analysis, and vice president of corporate finance.

Before American Tower, Malik led financial planning and analysis at Wolters Kluwer Health, and was a management consultant at Kearney and an audit CPA at EY.

Kevin Dutt, Greentown’s interim CEO, says in a news release that Malik’s “deep expertise will be a boon for Greentown as we seek to serve even more climatech startups in our home states of Massachusetts and Texas, and beyond.”

“I am delighted to join Greentown at such an exciting time in its organizational growth,” Malik says. “As a nonprofit that’s deeply dedicated to its mission of supporting climatech innovation, Greentown is poised to build on its impressive track record and expand its impact in the years to come.”

Greentown bills itself as North America’s largest incubator for climatech startups. Today, it’s home to more than 200 startups. Since its founding in 2011, Greentown has nurtured more than 575 startups that have raised over $8.2 billion in funding.

Last year, Greentown’s CEO and president Kevin Knobloch announced that he would be stepping down in July 2024, after less than a year in the role. The incubator. About a month before the announcement, Knobloch reported that Greentown would reduce its staff by 30 percent, eliminating roles in Boston and Houston. He noted changes in leadership, growth of the team and adjustments following the pandemic.

Greentown plans to announce its new permanent CEO by the end of the month.

Being prepared: Has the Texas grid been adequately winterized?

Winter in Texas

Houstonians may feel anxious as the city and state brace for additional freezing temperatures this winter. Every year since 2021’s Winter Storm Uri, Texans wonder whether the grid will keep them safe in the face of another winter weather event. The record-breaking cold temperatures of Uri exposed a crucial vulnerability in the state’s power and water infrastructure.

According to ERCOT’s 6-day supply and demand forecast from January 3, 2025, it expected plenty of generation capacity to meet the needs of Texans during the most recent period of colder weather. So why did the grid fail so spectacularly in 2021?

  1. Demand for electricity surged as millions of people tried to heat their homes.
  2. ERCOT was simply not prepared despite previous winter storms of similar intensity to offer lessons in similarities.
  3. The state was highly dependent on un-winterized natural gas power plants for electricity.
  4. The Texas grid is isolated from other states.
  5. Failures of communication and coordination between ERCOT, state officials, utility companies, gas suppliers, electricity providers, and power plants contributed to the devastating outages.

The domino effect resulted in power outages for millions of Texans, the deaths of hundreds of Texans, billions of dollars in damages, with some households going nearly a week without heat, power, and water. This catastrophe highlighted the need for swift and sweeping upgrades and protections against future extreme weather events.

Texas State Legislature Responds

Texas lawmakers proactively introduced and passed legislation aimed at upgrading the state’s power infrastructure and preventing repeated failures within weeks of the storm. Senate Bill 3 (SB3) measures included:

  • Requirements to weatherize gas supply chain and pipeline facilities that sell electric energy within ERCOT.
  • The ability to impose penalties of up to $1 million for violation of these requirements.
  • Requirement for ERCOT to procure new power sources to ensure grid reliability during extreme heat and extreme cold.
  • Designation of specific natural gas facilities that are critical for power delivery during energy emergencies.
  • Development of an alert system that is to be activated when supply may not be able to meet demand.
  • Requirement for the Public Utility Commission of Texas, or PUCT, to establish an emergency wholesale electricity pricing program.

Texas Weatherization by Natural Gas Plants

In a Railroad Commission of Texas document published May 2024 and geared to gas supply chain and pipeline facilities, dozens of solutions were outlined with weatherization best practices and approaches in an effort to prevent another climate-affected crisis from severe winter weather.

Some solutions included:

  • Installation of insulation on critical components of a facility.
  • Construction of permanent or temporary windbreaks, housing, or barriers around critical equipment to reduce the impact of windchill.
  • Guidelines for the removal of ice and snow from critical equipment.
  • Instructions for the use of temporary heat systems on localized freezing problems like heating blankets, catalytic heaters, or fuel line heaters.

According to Daniel Cohan, professor of environmental engineering at Rice University, power plants across Texas have installed hundreds of millions of dollars worth of weatherization upgrades to their facilities. In ERCOT’s January 2022 winterization report, it stated that 321 out of 324 electricity generation units and transmission facilities fully passed the new regulations.

Is the Texas Grid Adequately Winterized?

Utilities, power generators, ERCOT, and the PUCT have all made changes to their operations and facilities since 2021 to be better prepared for extreme winter weather. Are these changes enough? Has the Texas grid officially been winterized?

This season, as winter weather tests Texans, residents may potentially experience localized outages. When tree branches cannot support the weight of the ice, they can snap and knock out power lines to neighborhoods across the state. In the instance of a downed power line, we must rely on regional utilities to act quickly to restore power.

The specific legislation enacted by the Texas state government in response to the 2021 disaster addressed to the relevant parties ensures that they have done their part to winterize the Texas grid.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

This article first appeared on our sister site, InnovationMap.com.