Blue, green, gold — what do all the colors of hydrogen even mean? Photo via Getty Images

Repeated association of specific colors in defined contexts deeply reinforces themes in the human brain. It’s why most students and alumni of Texas A&M University scoff at the sight of burnt orange, and you’d be hard-pressed to find the home of a Longhorn adorned in shades of crimson or maroon.

The color-coding of hydrogen energy production exemplifies one such ambiguous classification methodology, as the seemingly innocuous labeling of hydrogen as green (for hydrogen produced from renewable sources) and black (for hydrogen produced from coal) initially helped to quickly discern which sources of hydrogen are environmentally friendly or not.

But the coding system quickly became more complicated, as the realization that hydrogen extracted from natural gas (aka grey hydrogen) or coal (again, black hydrogen, or sometimes, brown hydrogen, depending on the carbon content and energy density of the source coal) could be extracted in a less harmful way, by introducing methods of carbon capture and storage.

These cleaner methods for hydrogen extraction earned the lofty color coding of blue, just one shade away from green in the rainbow spectrum and a safe distance from the less delightful and inspiring colors grey, brown, and black.

Then along came pyrolysis — a method for producing hydrogen through methane cracking, plainly, the decomposition of methane, CH4, into solid carbon and hydrogen gas, without the introduction of oxygen. This method results in significantly less (if any) creation of carbon dioxide as a by-product. Logic would lead one to categorize this process with a color that lies further away from black than exalted cousin, green hydrogen.

However, the solid carbon that remains after pyrolysis retains over one-third of the original energy available from methane and could tip the GHG scales negatively if not utilized in an environmentally responsible manner, so it’s not a clear-cut winner in the game of lower-carbon energy production. Thus, it is nestled between green and blue and often referred to as “turquoise hydrogen” production.

Other hydrogen production methods — pink, purple, and red — defy rainbow logic as they have all proven to result in higher GHG emissions than the original “clean” queen, green hydrogen, despite following a similar electrolysis process to separate hydrogen and oxygen from one another in its original composition as water. The source of electricity used in the electrolysis process determines the color-code here, as pink hydrogen is generated from nuclear power, red hydrogen is generated from nuclear thermal power, and purple hydrogen is generated from a combination of nuclear power and nuclear thermal power.

Yellow hydrogen seems to not yet have found a clear definition. Some argue it refers to green hydrogen produced exclusively from solar-powered electrolysis, while others claim it to be the child of mixed green/gray hydrogen. Artists should probably keep a far distance from this conversation, unless the energy produced from the steam coming out of their ears could perform electrolysis more cleanly than any of the green hydrogen solutions.

Finally, we have white hydrogen, the naturally occurring, zero-carbon emitting, plentiful element found in the earth’s crust – which is also the least understood of all the hydrogen extraction methodologies.

Remember, hydrogen is the first element in the periodic table, meaning it’s density is very low. Hydrogen knows no bounds, and once it escapes from its natural home, it either floats off into outer space or attaches itself to another element to form a more containable compound, like water.

Many believe white hydrogen to be the unquestionable solution to a lower-carbon energy future but there is still much to be understood. Capturing, storing, and transporting white hydrogen remain mostly theoretical, despite recent progress, which includes one recently announced Houston lab dedicated to hydrogen transport. Another Houston company, Syzygy has raised millions with its light-based catalyst for hydrogen production.

For example, Cemvita, a local Houston chemical manufacturing company, predicts a future powered by gold hydrogen: white hydrogen sourced from depleted oil and gas wells. Many wildcatters believe strongly in a new era of exploration for white hydrogen using techniques refined in oil and gas exploration, including reservoir analysis, drilling, and fracking.

Without a doubt, investigating further the various hydrogen extraction theories is surely a craveable new challenge for the sciences. But perhaps the current color-coding nomenclature for hydrogen needs refinement, as well.

Unless used in the scientific context of wavelength, color-based labels represent an ambiguous classification tool, as the psychology of color depends on modern societal norms. The association of colors with the various hydrogen production methodologies does very little to distinguish the climate impact each method produces. Additionally, the existing categorizations do not consider any further distribution or processing of the produced hydrogen — a simple fact that could easily negate any amount of cleanliness implied by the various production methods — and a topic for a future article.

For now, hydrogen represents one of the front-running sources for a lower-carbon energy future, but it’s up to you if that’s best represented by a blue ribbon, gold medal, white star, or cold-hard greenbacks.

------

Lindsey Ferrell is a contributing writer to EnergyCapitalHTX and founder of Guerrella & Co.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

CenterPoint’s Greater Houston Resiliency Initiative makes advancements on progress

step by step

CenterPoint Energy has released the first of its public progress updates on the actions being taken throughout the Greater Houston 12-county area, which is part of Phase Two of its Greater Houston Resiliency Initiative.

The GHRI Phase Two will lead to more than 125 million fewer outage minutes annually, according to CenterPoint.

According to CenterPoint, they have installed around 4,600 storm-resilient poles, installed more than 100 miles of power lines underground, cleared more than 800 miles of hazardous vegetation to improve reliability, and installed more self-healing automation all during the first two months of the program in preparation for the 2025 hurricane season.

"This summer, we accomplished a significant level of increased system hardening in the first phase of the Greater Houston Resilience Initiative,” Darin Carroll, senior vice president of CenterPoint Energy's Electric Business, says in a news release.

”Since then, as we have been fully engaged in delivering the additional set of actions in our second phase of GHRI, we continue to make significant progress as we work toward our ultimate goal of becoming the most resilient coastal grid in the country,” he continues.

The GHRI is a series of actions to “ strengthen resilience, enable a self-healing grid and reduce the duration and impact of power outages” according to a news release. The following progress through early November include:

The second phase of GHRI will run through May 31, 2025. During this time, CenterPoint teams will be installing 4,500 automated reliability devices to minimize sustained interruptions during major storms, reduce restoration times, and establish a network of 100 new weather monitoring stations. CenterPoint plans to complete each of these actions before the start of the next hurricane season.

“Now, and in the months to come, we will remain laser-focused on completing these critical resiliency actions and building the more reliable and more resilient energy system our customers expect and deserve," Carroll adds.

CenterPoint also announced that it has completed all 42 of the critical actions the company committed to taking in the aftermath of Hurricane Beryl. Some of the actions were trimming or removing higher-risk vegetation from more than 2,000 power line miles, installing more than 1,100 more storm-resilient poles, installing over 300 automated devices to reduce sustained outages, launching a new, cloud-based outage tracker, improving CenterPoint's Power Alert Service, hosting listening sessions across the service area and using feedback.

In October, CenterPoint Energy announced an agreement with Artificial Intelligence-powered infrastructure modeling platform Neara for engineering-grade simulations and analytics, and to deploy Neara’s AI capabilities across CenterPoint’s Greater Houston service area.

Greentown launches 3rd round of collaborative accelerator for energy tech founders of color

browning the green space

For the third year, Greentown Labs and Browning the Green Space have opened applications for ACCEL, a climatetech accelerator designed to bolster BIPOC-led companies.

The program, which is a year-long commitment providing opportunities across funding, networking connections, resources, and more, has applications open until January 7. Each selected company will receive non-dilutive grant funding up to $25,000, trainings from VentureWell, a desk and membership at Greentown Houston or Boston locations, a BGS membership, and more.

A handful of startups will be selected for the program, which is looking for companies at the two to four Technology Readiness Level (TRL) stage with a technology solution across agriculture, buildings, electricity, manufacturing, resiliency and adaptation, and transportation sectors.

“ACCEL has been amazing," Chidalu Onyenso, founder of Cambridge, Massachusetts-based EarthBond, a member of the 2022 cohort, writes on the website. "I’ve really enjoyed the membership and programming. I think it’s fantastic—if I met another Black or Brown founder focused on climatetech, I’d tell them to apply to this program, 100 percent.”

Earlier this year, the program — which is supported by the Massachusetts Clean Energy Center,Microsoft's Climate Innovation Fund, Equinor, Barr Foundationnamed seven companies to its second cohort and six to its inaugural batch in 2022. The 13 companies across two cohorts so far have received $325,000 in grant funding from the program.

"These BIPOC-led startups are developing climate technologies that will lead us to a more equitable and sustainable future," MassCEC CEO Dr. Emily Reichert, the former CEO of Greentown, said of the second cohort in a news release. "We want ALL climatetech innovators and entrepreneurs to thrive here in Massachusetts. We are proud to support the ACCEL accelerator, created and led by Greentown Labs and Browning the Green Space. The ACCEL program is helping us build a more diverse innovation ecosystem by breaking down barriers and expanding opportunities."

Interested and qualifying companies can apply online.

Houston university launches global hub to drive innovation in sustainable energy, advanced technologies

incoming, India

Rice University is launching Rice Global India, which is a strategic initiative to expand India’s rapidly growing education and technology sectors.

The new hub will be in the country’s third-largest city and the center of the country’s high-tech industry, Bengaluru, India, and will include collaborations with top-tier research and academic institutions. Rice continues its collaborations with institutions like the Indian Institute of Technology (IIT) Kanpur and the Indian Institute of Science (IISc) Bengaluru. The partnerships are expected to advance research initiatives, student and faculty exchanges and collaborations in artificial intelligence, biotechnology and sustainable energy.

“India is a country of tremendous opportunity, one where we see the potential to make a meaningful impact through collaboration in research, innovation and education,” Rice President Reginald DesRoches says in a news release. “Our presence in India is a critical step in expanding our global reach, and we are excited to engage more with India’s academic leaders and industries to address some of the most pressing challenges of our time.”

India was a prime spot for the location due to the energy, climate change, artificial intelligence and biotechnology studies that align with Rice’s research that is outlined in its strategic plan Momentous: Personalized Scale for Global Impact.

“India’s position as one of the world’s fastest-growing education and technology markets makes it a crucial partner for Rice’s global vision,” vice president for global at Rice Caroline Levander adds. “The U.S.-India relationship, underscored by initiatives like the U.S.-India Initiative on Critical and Emerging Technology, provides fertile ground for educational, technological and research exchanges.”

On November 18, the university hosted a ribbon-cutting ceremony in Bengaluru, India to help launch the project.

“This expansion reflects our commitment to fostering a more interconnected world where education and research transcend borders,” DesRoches says.

———

This article originally ran on InnovationMap.