Blue, green, gold — what do all the colors of hydrogen even mean? Photo via Getty Images

Repeated association of specific colors in defined contexts deeply reinforces themes in the human brain. It’s why most students and alumni of Texas A&M University scoff at the sight of burnt orange, and you’d be hard-pressed to find the home of a Longhorn adorned in shades of crimson or maroon.

The color-coding of hydrogen energy production exemplifies one such ambiguous classification methodology, as the seemingly innocuous labeling of hydrogen as green (for hydrogen produced from renewable sources) and black (for hydrogen produced from coal) initially helped to quickly discern which sources of hydrogen are environmentally friendly or not.

But the coding system quickly became more complicated, as the realization that hydrogen extracted from natural gas (aka grey hydrogen) or coal (again, black hydrogen, or sometimes, brown hydrogen, depending on the carbon content and energy density of the source coal) could be extracted in a less harmful way, by introducing methods of carbon capture and storage.

These cleaner methods for hydrogen extraction earned the lofty color coding of blue, just one shade away from green in the rainbow spectrum and a safe distance from the less delightful and inspiring colors grey, brown, and black.

Then along came pyrolysis — a method for producing hydrogen through methane cracking, plainly, the decomposition of methane, CH4, into solid carbon and hydrogen gas, without the introduction of oxygen. This method results in significantly less (if any) creation of carbon dioxide as a by-product. Logic would lead one to categorize this process with a color that lies further away from black than exalted cousin, green hydrogen.

However, the solid carbon that remains after pyrolysis retains over one-third of the original energy available from methane and could tip the GHG scales negatively if not utilized in an environmentally responsible manner, so it’s not a clear-cut winner in the game of lower-carbon energy production. Thus, it is nestled between green and blue and often referred to as “turquoise hydrogen” production.

Other hydrogen production methods — pink, purple, and red — defy rainbow logic as they have all proven to result in higher GHG emissions than the original “clean” queen, green hydrogen, despite following a similar electrolysis process to separate hydrogen and oxygen from one another in its original composition as water. The source of electricity used in the electrolysis process determines the color-code here, as pink hydrogen is generated from nuclear power, red hydrogen is generated from nuclear thermal power, and purple hydrogen is generated from a combination of nuclear power and nuclear thermal power.

Yellow hydrogen seems to not yet have found a clear definition. Some argue it refers to green hydrogen produced exclusively from solar-powered electrolysis, while others claim it to be the child of mixed green/gray hydrogen. Artists should probably keep a far distance from this conversation, unless the energy produced from the steam coming out of their ears could perform electrolysis more cleanly than any of the green hydrogen solutions.

Finally, we have white hydrogen, the naturally occurring, zero-carbon emitting, plentiful element found in the earth’s crust – which is also the least understood of all the hydrogen extraction methodologies.

Remember, hydrogen is the first element in the periodic table, meaning it’s density is very low. Hydrogen knows no bounds, and once it escapes from its natural home, it either floats off into outer space or attaches itself to another element to form a more containable compound, like water.

Many believe white hydrogen to be the unquestionable solution to a lower-carbon energy future but there is still much to be understood. Capturing, storing, and transporting white hydrogen remain mostly theoretical, despite recent progress, which includes one recently announced Houston lab dedicated to hydrogen transport. Another Houston company, Syzygy has raised millions with its light-based catalyst for hydrogen production.

For example, Cemvita, a local Houston chemical manufacturing company, predicts a future powered by gold hydrogen: white hydrogen sourced from depleted oil and gas wells. Many wildcatters believe strongly in a new era of exploration for white hydrogen using techniques refined in oil and gas exploration, including reservoir analysis, drilling, and fracking.

Without a doubt, investigating further the various hydrogen extraction theories is surely a craveable new challenge for the sciences. But perhaps the current color-coding nomenclature for hydrogen needs refinement, as well.

Unless used in the scientific context of wavelength, color-based labels represent an ambiguous classification tool, as the psychology of color depends on modern societal norms. The association of colors with the various hydrogen production methodologies does very little to distinguish the climate impact each method produces. Additionally, the existing categorizations do not consider any further distribution or processing of the produced hydrogen — a simple fact that could easily negate any amount of cleanliness implied by the various production methods — and a topic for a future article.

For now, hydrogen represents one of the front-running sources for a lower-carbon energy future, but it’s up to you if that’s best represented by a blue ribbon, gold medal, white star, or cold-hard greenbacks.

------

Lindsey Ferrell is a contributing writer to EnergyCapitalHTX and founder of Guerrella & Co.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New report predicts major data center boom in Texas by 2028

data analysis

Data centers are proving to be a massive economic force in Texas.

For instance, a new report from clean energy company Bloom Energy predicts Texas will see a 142 percent increase in its market share for data centers from 2025 to 2028. That would be the highest increase of any state.

Bloom Energy expects Texas to exceed 40 gigawatts of data-center capacity by 2028, representing a nearly 30 percent share of the U.S. market. A typical AI data center consumes 1 to 2 gigawatts of energy.

“Data center and AI factory developers can’t afford delays,” Natalie Sunderland, Bloom Energy’s chief marketing officer, said in the report. “Our analysis and survey results show that they’re moving into power‑advantaged regions where capacity can be secured faster — and increasingly designing campuses to operate independently of the grid.”

“The surge in AI demand creates a clear opportunity for states that can adapt to support large-scale AI deployments at speed,” Sunderland adds.

Further evidence of the data center explosion in Texas comes from ConstructConnect, a provider of data and software for contractors and manufacturers. ConstructConnect reported that in the 12-month span through November 2025, data-center construction starts in Texas accounted for $11 billion in spending. At $12.5 billion, only Louisiana surpassed the Texas total.

Capital expenses for U.S. data centers were expected to surpass $425 billion last year, according to ratings agency S&P Global.

ConstructConnect also reports that Texas is among five states collectively grabbing 80 percent of potential data center construction starts. Currently, Texas hosts around 400 data centers, with close to 60 of them in the Houston market.

A large pool of data-center construction spending in Texas is flowing from Google, which announced in November that it would earmark $40 billion for new AI data centers in the state.

“Texas leads in AI and tech innovation,” Gov. Greg Abbott proclaimed when the Google investment was unveiled.

Other studies and reports lay out just how much data centers are influencing economic growth in the Lone Star State:

  • A study by Texas Royalty Brokers indicates Texas leads the U.S. with 17 clusters of AI data centers. The study measured the density of AI data centers by counting the number of graphics processing units (GPUs) installed in those clusters. GPUs are specialized chips built to run AI models and perform complex calculations.
  • Citing data from construction consulting company FMI, The Wall Street Journal reported that spending on construction of data centers is expected to rise 23 percent in 2026 compared with last year. Much of that construction spending will happen in Texas. In the 12 months through November 2025, the average data center cost $597 million, according to ConstructConnect.
  • Data published in 2025 by commercial real estate services company Cushman & Wakefield shows three Texas markets — Austin, Dallas and San Antonio — boast the lowest construction costs for data centers among the 19 U.S. markets that were analyzed. The mid-range of costs in that trio of markets is roughly $10.65 million per megawatt. Houston isn’t included in the data.

Although Houston isn’t cited in the Cushman & Wakefield data, it nonetheless is playing a major role in the data-center boom. Houston-area energy giants Chevron and ExxonMobil are chasing opportunities to supply natural gas as a power source for data centers, for example.

“As Houston rapidly evolves into a hub for AI, cloud computing, and data infrastructure, the city is experiencing a surge in data-center investments driven by its unique position at the intersection of energy, technology, and innovation,” says the Greater Houston Partnership.

Houston-based ENGIE to add new wind and solar projects to Texas grid

coming soon

Houston-based ENGIE North America Inc. has expanded its partnership with Los Angeles-based Ares Infrastructure Opportunities to add 730 megawatts of renewable energy projects to the ERCOT grid.

The new projects will include one wind and two solar projects in Texas.

“The continued growth of our relationship with Ares reflects the strength of ENGIE’s portfolio of assets and our track record of delivering, operating and financing growth in the U.S. despite challenging circumstances,” Dave Carroll, CEO and Chief Renewables Officer of ENGIE North America, said in a news release. “The addition of another 730 MW of generation to our existing relationship reflects the commitment both ENGIE and Ares have to meeting growing demand for power in the U.S. and our willingness to invest in meeting those needs.”

ENGIE has more than 11 gigawatts of renewable energy projects in operation or under construction in the U.S. and Canada, and 52.7 gigawatts worldwide. The company is targeting 95 gigawatts by 2030.

ENGIE launched three new community solar farms in Illinois since December, including the 2.5-megawatt Harmony community solar farm in Lena and the Knox 2A and Knox 2B projects in Galesburg.

The company's 600-megawatt Swenson Ranch Solar project near Abilene, Texas, is expected to go online in 2027 and will provide power for Meta, the parent company of social media platform Facebook. Late last year, ENGIE also signed a nine-year renewable energy supply agreement with AstraZeneca to support the pharmaceutical company’s manufacturing operations from its 114-megawatt Tyson Nick Solar Project in Lamar County, Texas.

Houston geothermal company raises $97M Series B

fresh funding

Houston-based geothermal energy startup Sage Geosystems has closed its Series B fundraising round and plans to use the money to launch its first commercial next-generation geothermal power generation facility.

Ormat Technologies and Carbon Direct Capital co-led the $97 million round, according to a press release from Sage. Existing investors Exa, Nabors, alfa8, Arch Meredith, Abilene Partners, Cubit Capital and Ignis H2 Energy also participated, as well as new investors SiteGround Capital and The UC Berkeley Foundation’s Climate Solutions Fund.

The new geothermal power generation facility will be located at one of Ormat Technologies' existing power plants. The Nevada-based company has geothermal power projects in the U.S. and numerous other countries around the world. The facility will use Sage’s proprietary pressure geothermal technology, which extracts geothermal heat energy from hot dry rock, an abundant geothermal resource.

“Pressure geothermal is designed to be commercial, scalable and deployable almost anywhere,” Cindy Taff, CEO of Sage Geosystems, said in the news release. “This Series B allows us to prove that at commercial scale, reflecting strong conviction from partners who understand both the urgency of energy demand and the criticality of firm power.”

Sage reports that partnering with the Ormat facility will allow it to market and scale up its pressure geothermal technology at a faster rate.

“This investment builds on the strong foundation we’ve established through our commercial agreement and reinforces Ormat’s commitment to accelerating geothermal development,” Doron Blachar, CEO of Ormat Technologies, added in the release. “Sage’s technical expertise and innovative approach are well aligned with Ormat’s strategy to move faster from concept to commercialization. We’re pleased to take this natural next step in a partnership we believe strongly in.”

In 2024, Sage agreed to deliver up to 150 megawatts of new geothermal baseload power to Meta, the parent company of Facebook. At the time, the companies reported that the project's first phase would aim to be operating in 2027.

The company also raised a $17 million Series A, led by Chesapeake Energy Corp., in 2024.