the view from heti

5 reasons Texas energy leaders are excited about sustainable nuclear energy

Texas leaders discussed the opportunity for nuclear energy. Photo via htxenergytransition.org

The University of Texas at Austin Cockrell School of Engineering hosted an event on August 16th called Advanced Nuclear Technology in Texas, where Dow and X-Energy CEOs joined Texas Governor Greg Abbott for a discussion about why the Texas Gulf Coast is quickly becoming the epicenter for nuclear with the recent announcement about Dow and X-Energy. Dow and X-energy are combining efforts to deploy the first advanced small modular nuclear reactor at industrial site under DOE’s Advanced Reactor Demonstration Program

“Texas is the energy capital of the world, but more important is what we are doing with that energy and what it means for our future in the state of Texas,” said Abbott. “Very important to our state is how we use energy to generate power for our grid. For a state that continues to grow massively, we are at the height of our production during the day, and we generate more power than California and New York combined. But we need more dispatchable power generation. One thing we are looking at with a keen eye is the ability to expand our capabilities with regard to nuclear generated power.”

The Governor announced a directive to the Public Utilities Commission of Texas to formulate a workgroup that will make recommendations that aim to propel Texas as a national leader in advanced nuclear energy.

According to the directive, to maximize power grid reliability, the group will work to understand Texas’s role in deploying and using advanced reactors, consider potential financial incentives available, determine nuclear-specific changes needed in the Electric Reliability Council of Texas (ERCOT) market, identify any federal or state regulatory hurdles to development, and analyze how Texas can streamline and speed up advanced reactor construction permitting.

Below are five key takeaways about the project and why energy experts are excited about advanced nuclear energy:

  • Advanced SMR Nuclear Project for Carbon-Free Energy: Dow, a global materials science leader, has partnered with X-energy to establish an advanced small modular reactor (SMR) nuclear project at its Seadrift Operations site in Texas. The project aims to provide safe, reliable, and zero carbon emissions power and steam to replace aging energy assets.
  • Decarbonization and Emission Reduction: This collaboration is set to significantly reduce the Seadrift site’s emissions by approximately 440,000 metric tons of CO2 equivalent per year. By adopting advanced nuclear technology, Dow is making a notable contribution to decarbonizing its manufacturing processes and improving environmental sustainability.
  • Grid Stability and Reliability: The advanced nuclear technology offers enhanced power and steam reliability, ensuring a stable energy supply for Dow’s Seadrift site. This is crucial for maintaining uninterrupted manufacturing operations and contributing to overall electric grid stability.
  • Texas Gulf Coast Energy Hub: Texas, as the energy capital of the world, has been chosen as the location for this groundbreaking project. This selection underscores Texas’ exceptional business climate, innovation history, and commitment to leading the energy transition. The project builds upon Texas’ position as a global energy leader.
  • Economic Growth and Job Opportunities: The SMR nuclear project promises to bring economic growth to the Texas Gulf Coast. It is expected to create new jobs, provide economic opportunities, and strengthen the local economy. By embracing innovative and sustainable energy solutions, Dow and X-energy are driving both industrial advancement and community prosperity.
———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Trending News

A View From HETI

Researchers have secured $3.3 million in funding to develop an AI-powered subsurface sensing system aimed at improving the safety and efficiency of underground power line installation. Photo via Getty Images

Researchers from the University of Houston — along with a Hawaiian company — have received $3.3 million in funding to explore artificial intelligence-backed subsurface sensing system for safe and efficient underground power line installation.

Houston's power lines are above ground, but studies show underground power is more reliable. Installing underground power lines is costly and disruptive, but the U.S. Department of Energy, in an effort to find a solution, has put $34 million into its new GOPHURRS program, which stands for Grid Overhaul with Proactive, High-speed Undergrounding for Reliability, Resilience, and Security. The funding has been distributed across 12 projects in 11 states.

“Modernizing our nation’s power grid is essential to building a clean energy future that lowers energy costs for working Americans and strengthens our national security,” U.S. Secretary of Energy Jennifer M. Granholm says in a DOE press release.

UH and Hawaii-based Oceanit are behind one of the funded projects, entitled “Artificial Intelligence and Unmanned Aerial Vehicle Real-Time Advanced Look-Ahead Subsurface Sensor.”

The researchers are looking a developing a subsurface sensing system for underground power line installation, potentially using machine learning, electromagnetic resistivity well logging, and drone technology to predict and sense obstacles to installation.

Jiefu Chen, associate professor of electrical and computer engineering at UH, is a key collaborator on the project, focused on electromagnetic antennas installed on UAV and HDD drilling string. He's working with Yueqin Huang, assistant professor of information science technology, who leads the geophysical signal processing and Xuqing Wu, associate professor of computer information systems, responsible for integrating machine learning.

“Advanced subsurface sensing and characterization technologies are essential for the undergrounding of power lines,” says Chen in the release. “This initiative can enhance the grid's resilience against natural hazards such as wildfires and hurricanes.”

“If proven successful, our proposed look-ahead subsurface sensing system could significantly reduce the costs of horizontal directional drilling for installing underground utilities,” Chen continues. “Promoting HDD offers environmental advantages over traditional trenching methods and enhances the power grid’s resilience.”

Trending News