the view from heti

5 reasons Texas energy leaders are excited about sustainable nuclear energy

Texas leaders discussed the opportunity for nuclear energy. Photo via htxenergytransition.org

The University of Texas at Austin Cockrell School of Engineering hosted an event on August 16th called Advanced Nuclear Technology in Texas, where Dow and X-Energy CEOs joined Texas Governor Greg Abbott for a discussion about why the Texas Gulf Coast is quickly becoming the epicenter for nuclear with the recent announcement about Dow and X-Energy. Dow and X-energy are combining efforts to deploy the first advanced small modular nuclear reactor at industrial site under DOE’s Advanced Reactor Demonstration Program

“Texas is the energy capital of the world, but more important is what we are doing with that energy and what it means for our future in the state of Texas,” said Abbott. “Very important to our state is how we use energy to generate power for our grid. For a state that continues to grow massively, we are at the height of our production during the day, and we generate more power than California and New York combined. But we need more dispatchable power generation. One thing we are looking at with a keen eye is the ability to expand our capabilities with regard to nuclear generated power.”

The Governor announced a directive to the Public Utilities Commission of Texas to formulate a workgroup that will make recommendations that aim to propel Texas as a national leader in advanced nuclear energy.

According to the directive, to maximize power grid reliability, the group will work to understand Texas’s role in deploying and using advanced reactors, consider potential financial incentives available, determine nuclear-specific changes needed in the Electric Reliability Council of Texas (ERCOT) market, identify any federal or state regulatory hurdles to development, and analyze how Texas can streamline and speed up advanced reactor construction permitting.

Below are five key takeaways about the project and why energy experts are excited about advanced nuclear energy:

  • Advanced SMR Nuclear Project for Carbon-Free Energy: Dow, a global materials science leader, has partnered with X-energy to establish an advanced small modular reactor (SMR) nuclear project at its Seadrift Operations site in Texas. The project aims to provide safe, reliable, and zero carbon emissions power and steam to replace aging energy assets.
  • Decarbonization and Emission Reduction: This collaboration is set to significantly reduce the Seadrift site’s emissions by approximately 440,000 metric tons of CO2 equivalent per year. By adopting advanced nuclear technology, Dow is making a notable contribution to decarbonizing its manufacturing processes and improving environmental sustainability.
  • Grid Stability and Reliability: The advanced nuclear technology offers enhanced power and steam reliability, ensuring a stable energy supply for Dow’s Seadrift site. This is crucial for maintaining uninterrupted manufacturing operations and contributing to overall electric grid stability.
  • Texas Gulf Coast Energy Hub: Texas, as the energy capital of the world, has been chosen as the location for this groundbreaking project. This selection underscores Texas’ exceptional business climate, innovation history, and commitment to leading the energy transition. The project builds upon Texas’ position as a global energy leader.
  • Economic Growth and Job Opportunities: The SMR nuclear project promises to bring economic growth to the Texas Gulf Coast. It is expected to create new jobs, provide economic opportunities, and strengthen the local economy. By embracing innovative and sustainable energy solutions, Dow and X-energy are driving both industrial advancement and community prosperity.
———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Trending News

A View From HETI

Greenhouse gases continue to rise, and the challenges they pose are not going away. Photo via Getty Images

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

Trending News