Texas leaders discussed the opportunity for nuclear energy. Photo via htxenergytransition.org

The University of Texas at Austin Cockrell School of Engineering hosted an event on August 16th called Advanced Nuclear Technology in Texas, where Dow and X-Energy CEOs joined Texas Governor Greg Abbott for a discussion about why the Texas Gulf Coast is quickly becoming the epicenter for nuclear with the recent announcement about Dow and X-Energy. Dow and X-energy are combining efforts to deploy the first advanced small modular nuclear reactor at industrial site under DOE’s Advanced Reactor Demonstration Program

“Texas is the energy capital of the world, but more important is what we are doing with that energy and what it means for our future in the state of Texas,” said Abbott. “Very important to our state is how we use energy to generate power for our grid. For a state that continues to grow massively, we are at the height of our production during the day, and we generate more power than California and New York combined. But we need more dispatchable power generation. One thing we are looking at with a keen eye is the ability to expand our capabilities with regard to nuclear generated power.”

The Governor announced a directive to the Public Utilities Commission of Texas to formulate a workgroup that will make recommendations that aim to propel Texas as a national leader in advanced nuclear energy.

According to the directive, to maximize power grid reliability, the group will work to understand Texas’s role in deploying and using advanced reactors, consider potential financial incentives available, determine nuclear-specific changes needed in the Electric Reliability Council of Texas (ERCOT) market, identify any federal or state regulatory hurdles to development, and analyze how Texas can streamline and speed up advanced reactor construction permitting.

Below are five key takeaways about the project and why energy experts are excited about advanced nuclear energy:

  • Advanced SMR Nuclear Project for Carbon-Free Energy: Dow, a global materials science leader, has partnered with X-energy to establish an advanced small modular reactor (SMR) nuclear project at its Seadrift Operations site in Texas. The project aims to provide safe, reliable, and zero carbon emissions power and steam to replace aging energy assets.
  • Decarbonization and Emission Reduction: This collaboration is set to significantly reduce the Seadrift site’s emissions by approximately 440,000 metric tons of CO2 equivalent per year. By adopting advanced nuclear technology, Dow is making a notable contribution to decarbonizing its manufacturing processes and improving environmental sustainability.
  • Grid Stability and Reliability: The advanced nuclear technology offers enhanced power and steam reliability, ensuring a stable energy supply for Dow’s Seadrift site. This is crucial for maintaining uninterrupted manufacturing operations and contributing to overall electric grid stability.
  • Texas Gulf Coast Energy Hub: Texas, as the energy capital of the world, has been chosen as the location for this groundbreaking project. This selection underscores Texas’ exceptional business climate, innovation history, and commitment to leading the energy transition. The project builds upon Texas’ position as a global energy leader.
  • Economic Growth and Job Opportunities: The SMR nuclear project promises to bring economic growth to the Texas Gulf Coast. It is expected to create new jobs, provide economic opportunities, and strengthen the local economy. By embracing innovative and sustainable energy solutions, Dow and X-energy are driving both industrial advancement and community prosperity.
———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

University of Houston secures $3.6M from DOE program to fund sustainable fuel production

freshly granted

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

Global industrial company Daikin makes deal with Houston Astros on stadium rename

big deal

The Houston Astros' home will get a new name on Jan. 1, becoming Daikin Park under an agreement through the 2039 season the team announced Monday.

The stadium opened as Enron Field in 2000 as part of a 30-year, $100 million agreement but the name was removed in March 2002 following Enron Corp.'s bankruptcy filing and the ballpark briefly became Astros Field.

It was renamed Minute Maid Park in June 2002 as part of a deal with The Minute Maid Co., a Houston-based subsidiary of The Coca-Cola Co. Then-Astros owner Drayton McLane said at the time the agreement was for 28 years and for more than $100 million.

The new deal is with Daikin Comfort Technologies North America Inc., a subsidiary of Daikin Industries Ltd., which is based in Japan and is a leading air conditioning company.

Minute Maid will remain an Astros partner through 2029, the team said.

In August, Daikin, which has its 4.2 million-square-foot Daikin Texas Technology Park in Waller, Texas, partnered with the city of Houston to provide advanced air conditioning and heating solutions to help homeowners with energy efficiency and general comfort. The company pledged install up to 30 horizontal discharge inverter FIT heat pump units over the next three years.

3 things you may have missed: Houston climatetech startup closes seed, events to attend, and more

taking notes

Editor's note: Dive headfirst into the new week with three quick things to catch up on in Houston's energy transition.

Events not to miss

Put these Houston-area energy-related events on your calendar.

Big raise: Helix Earth secures $5.6M seed led by local investor

Helix Earth's technology is estimated to save up to half of the net energy used in commercial air conditioning, reducing both emissions and costs for operators. Photo by Sergei A/Pexels

A Houston startup with clean tech originating out of NASA has secured millions in funding.

Helix Earth Technologies closed an oversubscribed $5.6 million seed funding led by Houston-based research and investment firm Veriten. Anthropocene Ventures, Semilla Capital, and others including individual investors also participated in the round.

“This investment will empower the Helix Earth team to accelerate the development and deployment of our first groundbreaking hardware technology designed to disrupt a significant portion of the commercial air conditioning market, an industry that is ready for innovation,” Rawand Rasheed, Helix Earth co-founder and CEO, says in a news release. Continue reading.

Podcast: Sujatha Kumar of Dsider on helping startups bridge the critical gap between vision and execution

Through Dsider’s techno-economic analysis platform, Sujatha Kumar is helping startups bridge the critical gap between vision and execution, ensuring they can navigate complex markets with confidence. Photo via LinkedIn

What if the future of clean energy wasn’t just about invention, but execution? For Sujatha Kumar, CEO of Dsider, success in clean tech hinges on more than groundbreaking technology—it’s about empowering founders with the tools to make their innovations viable, scalable, and economically sound.

Through Dsider’s techno-economic analysis (TEA) platform, Kumar is helping startups bridge the critical gap between vision and execution, ensuring they can navigate complex markets with confidence.

In a recent episode of the Energy Tech Startups Podcast, Kumar shared her insights on the growing importance of TEA in the hard tech space. While clean energy innovation promises transformative solutions, the challenge lies in proving both technical feasibility and economic sustainability. Kumar argues that many early-stage founders, especially in fields like carbon capture, microgrids, and renewable energy, lack the necessary financial tools to assess market fit and long-term profitability—a gap Dsider aims to fill. Read more and listen to the episode.