zooming in on emissions

UH team unlocks innovative approach to pinpoint pollution factors

A University of Houston team looked into what areas in Houston had the highest impact on emissions and how certain meteorological factors play into ozone formation. Photo via UH.edu

A team of researchers at the University of Houston are using machine learning to help guide pollution fighting strategies.

As reported in the journal Environmental Pollution last month, the team used the SHAP algorithm of machine learning (a game theory approach) and the Positive Matrix Factorization to pinpoint what areas in Houston had the highest impact on emissions and how certain meteorological factors play into ozone formation.

The paper was authored by Delaney Nelson, a doctoral student at the Department of Earth and Atmospheric Sciences of UH, and Yunsoo Choi, corresponding author and professor of atmospheric chemistry, AI deep learning, air quality modeling and satellite remote sensing.

The team's research closely tracked nitrogen-based compound and volatile organic compound measurements from Texas Commission on Environmental Quality's monitoring stations in the Houston area. After importing measurements from The Lynchburg Ferry station in Houston's ship channel and the urban Milby Park station, the machine learning and SHAP analysis showed a chemically definitive difference between the two areas.

For example, at the industrial station, the most impactful sources of pollution were from oil and gas flaring/production. At the urban site n_decane and industrial emissions/evaporation had the most impact on ozone.

According to Nelson and Choi, this shows that the machine learning and SHAP analysis approach can be used to tailor more precise air quality management strategies in different areas based on the site's unique characteristics.

“Once we know the specific emission sources and factors, we can develop targeted strategies to reduce emissions, which will in turn reduce ozone in the air and make it healthier for everyone," Choi said in a statement.

“Pollution is a critical issue in Houston, where you have extreme high heat and high concentration of ozone in the summers. The types of insights we got are very useful information for the local community to develop effective policies. That’s why we put our time, effort and technological expertise into this project," he continued.

Next the team envisions applying their approach in different cities and across the country.

“Austin, San Antonio and Dallas all have different characteristics, so I expect (volatile organic compound) sources will also be different,” Choi said. “Identifying VOC sources in different cities is very important because each city should have its own unique pollution fighting strategy.”

This summer, the City of Houston released an updated report on its major strategies to combat climate change and build a more resilient future for its residents.

Trending News

A View From HETI

Houston American Energy Corp. will break ground on its first advanced recycling facility in Q4. Photo via Getty Images.

Houston American Energy Corp. (NYSE: HUSA) plans to break ground on its new advanced recycling facility in the Cedar Port Industrial Park in Q4, the company shared in an announcement this week.

The company acquired a 25-acre, $8.5 million site for development in July from TGS Cedar Port Partners, which handles approximately 5 billion pounds of plastic resin annually. HUSA also plans to build the Abundia Innovation Center on the site.

HUSA named Houston-based Corvus Construction Company the design and construction partner on both projects.

“The site at Cedar Port is in the largest master-planned rail and barge served industrial park in the United States with direct access to the Houston Ship Channel and the Port of Houston,” Ed Gillespie, CEO of HUSA, said in a news release. “It provides robust logistical advantages for the transportation of both feedstock and our low-carbon drop-in fuels and chemical products. Critically, the region has a deep pool of engineering and operations talent. HUSA looks forward to working with local communities and adding economic growth in the Gulf Coast region.”

The new advanced recycling facility will convert plastic waste into pyrolysis oil and will serve as a hub for a five-year development plan designed to scale production capacity.

The facility will be built around New York-based Abundia Global Impact Group LLC’s technologies and proprietary pyrolysis process, which converts plastic and certified biomass waste into high-quality renewable fuels.

HUSA acquired AGIG this summer. At the time, the combined company shared that it planned to serve a multi-billion-dollar global demand for renewable fuels, Sustainable Aviation Fuel (SAF) and recycled chemical feedstocks.

The Abundia Innovation Center is planned to serve as a state-of-the-art research and development facility for the renewable energy sector, aiding in the commercial and technical validation of new technologies. HUSA previously announced that Nexus PMG, also based in Houston, will provide strategic support and guidance in the development of the innovation hub.

According to HUSA, the recycling facility and innovation center will “create the foundation for HUSA’s long-term vision to be a leader in the low-carbon fuels sector by driving collaborative innovation.”

Trending News