freshly funded

3 Texas energy researchers earn early-career grants

Three researchers from Texas are among 93 early career scientists who will receive a collective $135 million in funding for projects lasting up to five years in duration. Photo via Getty Images

The U.S. Department of Energy has awarded funds to three Texas university researchers as part of its 2023 Early Career Research Program.

The researchers from Texas A&M University, University of Houston, and University of North Texas are among 93 early career scientists who will receive a collective $135 million in funding for projects lasting up to five years in duration. The DOE said in a statement that $69 million of those funds will be doled out in Fiscal Year 2023.

The funding is part of the DOE Office of Science’s Early Career Research Program which aims to support U.S. scientists during their formative years. Awardees must be an untenured, tenure-track assistant or associate professor at a U.S. academic institution or a full-time employee at a DOE National Laboratory who received a Ph.D. within the past 12 years to receive the funding.

“Supporting America’s scientists and researchers early in their careers will ensure the United States remains at the forefront of scientific discovery,” U.S. Secretary of Energy Jennifer M. Granholm says in a statement. “The funding announced today gives the recipients the resources to find the answers to some of the most complex questions as they establish themselves as experts in their fields.”

This year's Texas researchers were:

  • Youtong Zheng, Assistant Professor Department of Earth and Atmospheric Sciences at the University of Houston: Zheng's work focuses on how air pollution in urban communities relates to the intensification of storms, known as the aerosol invigoration effect. This research aims to use the DOE's Simple Cloud-Resolving E3SM Atmosphere Model (SCREAM) to improve the predictability of coastal-urban systems and improve DOE models.
  • Philip Adsley, Assistant Professor Department of Physics & Astronomy and Cyclotron Institute at Texas A&M University: Adsley looks at the dipole response of nuclei. The research will "develop independent calibration standards for dipole response measurements to validate modern experimental studies and investigate historical experimental discrepancies," according to an abstract. Experiments will be performed at Texas A&M, in Germany and in South Africa.
  • Omar Valsson, Assistant Professor Department of Chemistry at the University of North Texas: Valsson's research considers the polymorphism of molecular crystals. The research looks to develop a free energy sampling method for polymorphic transitions that can be applied to a wide range of molecular crystal systems. The findings have applications in chemistry, materials science, and the pharmaceutical and semiconductor industries, according to an abstract.

Since the DOE launched the Early Career Research Program in 2010 it has made 868 awards to university and National Lab researchers.

Earlier this summer the DOE's Advanced Research Projects Agency-Energy, or ARPA-E, announced $100 million in funding for its SCALEUP program at a Rice University event. Joe Zhou, CEO of Houston-based Quidnet Energy, spoke at the event on how the DOE funding benefitted his company.

Trending News

A View From HETI

HYCO1 has signed an agreement to convert 1 million tons per year of raw CO2 into industrial-grade syngas at a new carbon capture project in Malaysia. Photo via Getty Images.

Houston-based CO2 utilization company HYCO1 has signed a memorandum of understanding with Malaysia LNG Sdn. Bhd., a subsidiary of Petronas, for a carbon capture project in Malaysia, which includes potential utilization and conversion of 1 million tons of carbon dioxide per year.

The project will be located in Bintulu in Sarawak, Malaysia, where Malaysia LNG is based, according to a news release. Malaysia LNG will supply HYCO1 with an initial 1 million tons per year of raw CO2 for 20 years starting no later than 2030. The CCU plant is expected to be completed by 2029.

"This is very exciting for all stakeholders, including HYCO1, MLNG, and Petronas, and will benefit all Malaysians," HYCO1 CEO Gregory Carr said in the release. "We approached Petronas and MLNG in the hopes of helping them solve their decarbonization needs, and we feel honored to collaborate with MLNG to meet their Net Zero Carbon Emissions by 2050.”

The project will convert CO2 into industrial-grade syngas (a versatile mixture of carbon monoxide and hydrogen) using HYCO1’s proprietary CUBE Technology. According to the company, its CUBE technology converts nearly 100 percent of CO2 feed at commercial scale.

“Our revolutionary process and catalyst are game changers in decarbonization because not only do we prevent CO2 from being emitted into the atmosphere, but we transform it into highly valuable and usable downstream products,” Carr added in the release.

As part of the MoU, the companies will conduct a feasibility study evaluating design alternatives to produce low-carbon syngas.

The companies say the project is expected to “become one of the largest CO2 utilization projects in history.”

HYCO1 also recently announced that it is providing syngas technology to UBE Corp.'s new EV electrolyte plant in New Orleans. Read more here.

Trending News