The Clean Hydrogen Buyers Alliance plans to create the Gulf Coast Hydrogen Index to bring to bring transparency and confidence to hydrogen pricing. Photo via Getty Images

The Clean Hydrogen Buyers Alliance has proposed an index aimed at bringing transparency to pricing in the emerging hydrogen market.

The Houston-based alliance said the Gulf Coast Hydrogen Index, based on real-time data, would provide more clarity to pricing in the global market for hydrogen. The benchmarking effort is being designed to benefit clean hydrogen buyers, sellers and investors. The index would help position the U.S. “as the trading anchor for hydrogen’s next chapter as a globally traded commodity,” the alliance said.

According to ResearchAndMarkets.com, the global market for clean hydrogen was valued at $200 billion in 2024 and is projected to reach $700 billion by 2040.

John Flory, president of the alliance, said the lack of a pricing index has relegated hydrogen to niche-market status.

“Capital is waiting. Buyers are ready. But until now, there’s been no credible, transparent pricing signal to guide clean hydrogen investing or contracting,” Edward Morse, co-chairman of the Clean Hydrogen Transaction Advisory Committee, said in a news release.

The index would treat the Gulf Coast as the primary delivery hub for pipeline-grade hydrogen in three categories: basic, low-carbon and ultra-low-carbon. It would be similar to the Henry Hub index for pricing of natural gas.

Roger Ballentine, co-chairman of the clean energy advisory committee, said the hydrogen index would build confidence in this energy source among government agencies, companies and investors. A Henry Hub-style benchmark for hydrogen “provides clarity, reduces risk, and lays the foundation for clean energy to become a globally traded commodity critical to decarbonization,” he said.

The Gulf Coast, with Texas as the focal point, is key to the evolution of the U.S. clean hydrogen economy, according to the Fuel Cell and Hydrogen Energy Association.

At the core of the Gulf Coast’s role is the U.S. Department of Energy's selection of the Gulf Coast as one of the country’s seven regional hubs for clean hydrogen. However, the DOE has proposed cutting funding for the HyVelocity Gulf Coast Hydrogen Hub, a $1.2 billion development in Texas and Louisiana by AES, Air Liquide, Chevron, ExxonMobil, MHI Hydrogen Infrastructure and Ørsted, according to a new list of proposed DOE funding cancellations.

Rice Wind Energy had a strong showing at the DOE's 2025 Collegiate Wind Competition. Photo courtesy Rice University.

Houston students take home top prizes at DOE wind energy competition

wind winners

The student-led Rice Wind Energy team clinched second place overall at the U.S. Department of Energy’s 2025 Collegiate Wind Competition (CWC), which challenges students nationwide to design and build wind turbines, develop wind energy projects and engage in public outreach to promote renewable energy.

“The Collegiate Wind Competition is such an incredible opportunity for students passionate about sustainability to gain industry-applicable, hands-on experience in the renewable energy space,” senior and team vice president Jason Yang said in a news release.

The event was hosted by the National Renewable Energy Laboratories at the University of Colorado Boulder campus. Over 40 teams entered the competition, with just 12 advancing to the final stage. The competition comprises four core contests: connection creation, turbine design, turbine testing and project development.

Rice Wind Energy had the largest team with 26 students advancing to the final stage of the competition. It picked up a first-place win in the connection creation contest, and also placed third in the project development, fourth in turbine testing and fifth in turbine design contests.

“This accomplishment is a testament to our focus, teamwork and unwavering determination,” senior Esther Fahel, Rice Wind Energy’s 2024-25 president, said in a news release. “It’s a remarkable experience to have watched this team progress from its inception to the competition podium. The passion and drive of Rice students is so palpable.”

In the Connection Creation contest, the team hosted a wind energy panel with Texas Tech University, invited local high school students to campus for educational activities, produced a series of Instagram reels to address wind energy misconceptions and launched its first website.

The team also developed an autonomous wind turbine and floating foundation design that successfully produced over 20 watts of power in the wind tunnel. They were also one of just a few teams to complete the rigorous safety test, which brought their turbine to below 10 percent of its operational speed within 10 seconds of pressing an emergency stop button. It also designed a 450-megawatt floating wind farm located 38 kilometers off the coast of Oregon by using a multi-decision criteria matrix to select the optimal site, and conducted technical modeling.

“I am amazed at the team’s growth in impact and collaboration over the past year,” senior Ava Garrelts, the team’s Connection Creation lead for 2024-25, said in a news release. “It has been incredible to see our members develop their confidence by building tangible skills and lifelong connections. We are all honored to receive recognition for our work, but the entire experience has been just as rewarding.”

Rice faculty and industry sponsors included David Trevas and faculty advisers Gary Woods and Jose Moreto, Knape Associates, Hartzell Air Movement, NextEra Analytics, RWE Clean Energy, H&H Business Development and GE Vernova, Rice’s Oshman Engineering Design Kitchen, George R. Brown School of Engineering and Computing, Rice Engineering Alumni and Rice Center for Engineering Leadership.

The BYU Wind Energy Team took home the overall first-place prize. A team from the University of Texas at Dallas was the only other Texas-based team to make the 12-team finals.

Rice professor and Solidec co-founder Haotian Wang's research enables CO2 to be converted into valuable chemicals and fuels. Photo courtesy Welch Foundation.

Houston clean energy pioneer earns prestigious Welch Foundation award

Awards Season

A Rice University professor has earned a prestigious award from the Houston-based Welch Foundation, which supports chemistry research.

The foundation gave its 2025 Norman Hackerman Award in Chemical Research to Haotian Wang for his “exceptionally creative” research involving carbon dioxide electrochemistry. His research enables CO2 to be converted into valuable chemicals and fuels.

The award included $100,000 and a bronze sculpture.

“Dr. Wang’s extensive body of work and rigorous pursuit of efficient electrochemical solutions to practical problems set him apart as a top innovator among early-career researchers,” Catherine Murphy, chairwoman of the foundation’s Scientific Advisory Board, said in a news release.

Wang is an associate professor in the Department of Chemical and Biomolecular Engineering at Rice. The department’s Wang Group develops nanomaterials and electrolyzers for energy and environmental uses, such as energy storage, chemical and fuel generation, green synthesis and water treatment.

Wang also is co-founder of Solidec, a Houston startup that aims to turn his innovations into low-carbon fuels, carbon-negative hydrogen and carbon-neutral peroxide. The startup extracts molecules from water and air, then transforms them into pure chemicals and fuels that are free of carbon emissions.

Solidec has been selected for Chevron Technology Ventures’ catalyst program, a Rice One Small Step grant, a U.S. Department of Energy grant, and the first cohort of the Activate Houston program.

“Dr. Wang’s use of electrochemistry to close the carbon cycle and develop renewable sources of industrial chemicals directly intersects with the Welch Foundation mission of advancing chemistry while improving life,” Fred Brazelton, chairman and director of the Welch Foundation, said in the release.

Ramamoorthy Ramesh, executive vice president for research at Rice University, added: “We are proud to (Dr. Wang) at Rice. He’s using chemical engineering to solve a big problem for humanity, everything that the Welch Foundation stands for.”

Last year, the Hackerman Award went to Baylor College of Medicine's Livia Schiavinato Eberlin, who's known for her groundbreaking work in the application of mass spectrometry technologies, which are changing how physicians treat cancer and analyze tissues. Read more here.

The university will use the grant from the U.S. Department of Energy to develop a cost-effective, sustainable method for extracting rare earth elements from electronic waste. Photo via Getty Images

Texas A&M awarded $1.3M federal grant to develop clean energy tech from electronic waste

seeing green

Texas A&M University in College Station has received a nearly $1.3 million federal grant for development of clean energy technology.

The university will use the $1,280,553 grant from the U.S. Department of Energy to develop a cost-effective, sustainable method for extracting rare earth elements from electronic waste.

Rare earth elements (REEs) are a set of 17 metallic elements.

“REEs are essential components of more than 200 products, especially high-tech consumer products, such as cellular telephones, computer hard drives, electric and hybrid vehicles, and flat-screen monitors and televisions,” according to the Eos news website.

REEs also are found in defense equipment and technology such as electronic displays, guidance systems, lasers, and radar and sonar systems, says Eos.

The grant awarded to Texas A&M was among $17 million in DOE grants given to 14 projects that seek to accelerate innovation in the critical materials sector. The federal Energy Act of 2020 defines a critical material — such as aluminum, cobalt, copper, lithium, magnesium, nickel, and platinum — as a substance that faces a high risk of supply chain disruption and “serves an essential function” in the energy sector.

“DOE is helping reduce the nation’s dependence on foreign supply chains through innovative solutions that will tap domestic sources of the critical materials needed for next-generation technologies,” says U.S. Energy Secretary Jennifer Granholm. “These investments — part of our industrial strategy — will keep America’s growing manufacturing industry competitive while delivering economic benefits to communities nationwide.”

Under its deal with Occidental, pipeline company Enterprise Products Partners will create a carbon dioxide pipeline system for 1PointFive’s Bluebonnet Sequestration Hub. Photo via 1pointfive.com

Oxy, Enterprise Products Partners to collaborate on carbon dioxide pipeline system for Texas project

coming soon

Occidental Petroleum’s carbon capture, utilization, and sequestration (CCUS) subsidiary has tapped another Houston-based company to develop a carbon dioxide pipeline and transportation network for one of its CCUS hubs.

Under its deal with Occidental, pipeline company Enterprise Products Partners will create a carbon dioxide pipeline system for 1PointFive’s Bluebonnet Sequestration Hub, which will span more than 55,000 acres in Chambers, Liberty, and Jefferson counties. The hub will be able to hold about 1.2 billion metric tons of carbon dioxide. The new pipeline network will be co-located with existing pipelines.

Enterprise Products Partners also will supply fee-based services for transporting CO2 emissions from industrial facilities near the Houston Ship Channel to the Bluebonnet hub.

“This agreement pairs our expertise managing large volumes of CO2 with Enterprise’s decades of midstream experience to bring confidence to industrial customers seeking a decarbonization solution,” Jeff Alvarez, president of 1PointFive’s sequestration business, says in a news release.

The Bluebonnet Sequestration Hub recently received funding from the U.S. Department of Energy (DOE) to help cover development costs.

“This hub is located between two of the largest industrial corridors in Texas so captured CO2 can be efficiently transported and safely sequestered,” Alvarez said in 2023. “Rather than starting from scratch with individual capture and sequestration projects, companies can plug into this hub for access to shared carbon infrastructure.”

The DOE funding will go toward the creation of a new Texas-based revolving loan fund that operationally matches the existing Texas LoanSTAR revolving loan program. Photo via Getty Images

Texas lands largest portion of energy efficiency-focused federal grant program

DOE deal

Texas is among one of 17 states and territories to receive a portion of $66 million in awards for initiatives that pump federal dollars into their communities to support energy efficient projects.

The funds come from the U.S. Department of Energy's Energy Efficiency Revolving Loan Fund (RLF) Capitalization Grant Program. The RLF Program awards are intended to be put toward state-based loans and grants that go towards local businesses homeowners, and public spaces for "for energy efficiency audits, upgrades, and retrofits to increase energy efficiency," according to the DOE.

Texas received the largest portion thus far at $22.4 million. The dollars will go toward the creation of a new Texas-based revolving loan fund that operationally matches the existing Texas LoanSTAR revolving loan program.

The program currently finances energy-related, cost-reduced retrofits of public spaces as well as local municipalities. As of last year it had awarded more than 337 loans totaling more than $600 million, according to the Texas Comptroller's website.

In addition to the revolving loan, the state plans to use the DOE funds to provide free energy audit services to the community.

The DOE also awarded funding to create similar revolving loan programs and grants in Arizona, Georgia, Iowa, Puerto Rico and the U.S. Virgin Islands.

According to the DOE, every federal dollar invested into a state or local revolving loan fund can bring more than of $20 in private capital toward successful energy financing programs.

“Increased opportunities for low-cost financing will help states and territories expand access to the money-saving clean energy tools that will benefit the residential, commercial and public sectors,” Jennifer M. Granholm, U.S. Secretary of Energy, said in a statement. “We are excited to see states and territories take advantage of targeted and impactful financing options to transform their communities.”

The latest funding is the third award made by the RLF Program, which plans to make another round of awards later this year and a total $242 million once wrapped.

Other awards in this latest round include:

  • Arizona ($1,690,280)
  • Colorado ($1,631,220)
  • Delaware ($746,400)
  • Georgia ($2,453,810)
  • Iowa($7,068,920)
  • Kansas ($6,706,230)
  • Maine ($863,110)
  • Massachusetts ($1,894,760)
  • Minnesota ($1,884,300).
  • Nevada ($1,043,290)
  • New Jersey ($2,383,510)
  • New Mexico ($5,692,530)
  • Oklahoma ($7,592,300)
  • Puerto Rico ($1,070,490)
  • Rhode Island ($762,790)
  • U.S. Virgin Islands ($576,170)

Click here and here to read more about the previous awards.

Earlier this summer the DOE also awarded four Houston companies have received $50,000 each from the U.S. Department of Energy to further develop their carbon dioxide removal technology. Click here to read more.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based ENGIE to add new wind and solar projects to Texas grid

coming soon

Houston-based ENGIE North America Inc. has expanded its partnership with Los Angeles-based Ares Infrastructure Opportunities to add 730 megawatts of renewable energy projects to the ERCOT grid.

The new projects will include one wind and two solar projects in Texas.

“The continued growth of our relationship with Ares reflects the strength of ENGIE’s portfolio of assets and our track record of delivering, operating and financing growth in the U.S. despite challenging circumstances,” Dave Carroll, CEO and Chief Renewables Officer of ENGIE North America, said in a news release. “The addition of another 730 MW of generation to our existing relationship reflects the commitment both ENGIE and Ares have to meeting growing demand for power in the U.S. and our willingness to invest in meeting those needs.”

ENGIE has more than 11 gigawatts of renewable energy projects in operation or under construction in the U.S. and Canada, and 52.7 gigawatts worldwide. The company is targeting 95 gigawatts by 2030.

ENGIE launched three new community solar farms in Illinois since December, including the 2.5-megawatt Harmony community solar farm in Lena and the Knox 2A and Knox 2B projects in Galesburg.

The company's 600-megawatt Swenson Ranch Solar project near Abilene, Texas, is expected to go online in 2027 and will provide power for Meta, the parent company of social media platform Facebook. Late last year, ENGIE also signed a nine-year renewable energy supply agreement with AstraZeneca to support the pharmaceutical company’s manufacturing operations from its 114-megawatt Tyson Nick Solar Project in Lamar County, Texas.

Houston geothermal company raises $97M Series B

fresh funding

Houston-based geothermal energy startup Sage Geosystems has closed its Series B fundraising round and plans to use the money to launch its first commercial next-generation geothermal power generation facility.

Ormat Technologies and Carbon Direct Capital co-led the $97 million round, according to a press release from Sage. Existing investors Exa, Nabors, alfa8, Arch Meredith, Abilene Partners, Cubit Capital and Ignis H2 Energy also participated, as well as new investors SiteGround Capital and The UC Berkeley Foundation’s Climate Solutions Fund.

The new geothermal power generation facility will be located at one of Ormat Technologies' existing power plants. The Nevada-based company has geothermal power projects in the U.S. and numerous other countries around the world. The facility will use Sage’s proprietary pressure geothermal technology, which extracts geothermal heat energy from hot dry rock, an abundant geothermal resource.

“Pressure geothermal is designed to be commercial, scalable and deployable almost anywhere,” Cindy Taff, CEO of Sage Geosystems, said in the news release. “This Series B allows us to prove that at commercial scale, reflecting strong conviction from partners who understand both the urgency of energy demand and the criticality of firm power.”

Sage reports that partnering with the Ormat facility will allow it to market and scale up its pressure geothermal technology at a faster rate.

“This investment builds on the strong foundation we’ve established through our commercial agreement and reinforces Ormat’s commitment to accelerating geothermal development,” Doron Blachar, CEO of Ormat Technologies, added in the release. “Sage’s technical expertise and innovative approach are well aligned with Ormat’s strategy to move faster from concept to commercialization. We’re pleased to take this natural next step in a partnership we believe strongly in.”

In 2024, Sage agreed to deliver up to 150 megawatts of new geothermal baseload power to Meta, the parent company of Facebook. At the time, the companies reported that the project's first phase would aim to be operating in 2027.

The company also raised a $17 million Series A, led by Chesapeake Energy Corp., in 2024.

Houston expert discusses the clean energy founder's paradox

Guest Column

Everyone tells you to move fast and break things. In clean energy, moving fast without structural integrity means breaking the only planet we’ve got. This is the founder's paradox: you are building a company in an industry where the stakes are existential, the timelines are glacial, and the capital requires patience.

The myth of the lone genius in a garage doesn’t really apply here. Clean energy startups aren’t just fighting competitors. They are fighting physics, policy, and decades of existing infrastructure. This isn’t an app. You’re building something physical that has to work in the real world. It has to be cheaper, more reliable, and clearly better than fossil fuels. Being “green” alone isn’t enough. Scale is what matters.

Your biggest risks aren’t competitors. They’re interconnection delays, permitting timelines, supply chain fragility, and whether your first customer is willing to underwrite something that hasn’t been done before.

That reality creates a brutal filter. Successful founders in this space need deep technical knowledge and the ability to execute. You need to understand engineering, navigate regulation, and think in terms of markets and risk. You’re not just selling a product. You’re selling a future where your solution becomes the obvious choice. That means connecting short-term financial returns with long-term system change.

The capital is there, but it’s smarter and more demanding. Investors today have PhDs in electrochemistry and grid dynamics. They’ve been burned by promises of miracle materials that never left the lab. They don't fund visions; they fund pathways to impact that can scale and make financial sense. Your roadmap must show not just a brilliant invention, but a clear, believable plan to drive costs down over time.

Capital in this sector isn’t impressed by ambition alone. It wants evidence that risk is being retired in the right order — even if that means slower growth early.

Here’s the upside. The difficulty of clean energy is also its strength. If you succeed, your advantage isn’t just in software or branding. It’s in hardware, supply chains, approvals, and years of hard work that others can’t easily copy. Your real competitors aren’t other startups. They’re inertia and the existing system. Winning here isn’t zero-sum. When one solution scales, it helps the entire market grow.

So, to the founder in the lab, or running field tests at a remote site: your pace will feel slow. The validation cycles are long. But you are building in the physical world. When you succeed, you don’t have an exit. You have a foundation. You don't just have customers; you have converts. And the product you ship doesn't just generate revenue; it creates a legacy.

If your timelines feel uncomfortable compared to software, that’s because you’re operating inside a system designed to resist change. And let’s not forget you are building actual physical products that interact with a complex world. Times are tough. Don’t give up. We need you.

---

Nada Ahmed is the founding partner at Houston-based Energy Tech Nexus.