Teams from three Houston-area universities have been named to the DOE's annual competition. Photo via energy.gov

The U.S. Department of Energy’s Office of Technology Transitions selected 225 teams from 117 schools from 39 states — including three Houston-area universities — to participate in its annual startup competition.

University of Houston, Rice University, and Texas A&M University will compete in the EnergyTech University Prize, known as EnergyTech UP, in the 2024 Student Track. See the full list here.

The EnergyTech UP Student Track tasks collegiate teams to develop “actionable plans for business and commercialization opportunities around high-potential energy technologies.”

The competitors in the event, which is in its third year, will also receive free access to OTT’s Energy I-Corps curriculum. Finalists will receive mentorship from industry leaders on their proposals. Through three phases — Explore, Refine, and Pitch — with Bonus Prize winners also being selected along the way, the teams will compete for more than $400,000 in cash prizes.

Teams will present their proposals to a panel of judges in the hopes of being selected as a finalist in the first phase, the regional Explore Event.

Finalists will refine their ideas before pitching their complete plans at Zpryme’s 2024 Energy Thought Summit in April in Austin, Texas. The goal is for EnergyTech UP’s winning teams to have successfully identified promising energy technology, carefully assess its market potential, and create a business plan.

“We see immense value in supporting the next generation of clean energy leaders through EnergyTech UP” said DOE Chief Commercialization Officer and Director of OTT, Dr. Vanessa Z. Chan in a news release. “These teams are working to develop attainable, equitable, scalable energy technologies and business opportunities. They have the potential to profoundly impact the cleantech industry, and we’re proud to provide resources that can help bolster their ideas.”

Other Texas universities selected this year include:

  • The University of Texas at Austin
  • The University of Texas at El Paso
  • Texas Tech University
Three researchers from Texas are among 93 early career scientists who will receive a collective $135 million in funding for projects lasting up to five years in duration. Photo via Getty Images

3 Texas energy researchers earn early-career grants

freshly funded

The U.S. Department of Energy has awarded funds to three Texas university researchers as part of its 2023 Early Career Research Program.

The researchers from Texas A&M University, University of Houston, and University of North Texas are among 93 early career scientists who will receive a collective $135 million in funding for projects lasting up to five years in duration. The DOE said in a statement that $69 million of those funds will be doled out in Fiscal Year 2023.

The funding is part of the DOE Office of Science’s Early Career Research Program which aims to support U.S. scientists during their formative years. Awardees must be an untenured, tenure-track assistant or associate professor at a U.S. academic institution or a full-time employee at a DOE National Laboratory who received a Ph.D. within the past 12 years to receive the funding.

“Supporting America’s scientists and researchers early in their careers will ensure the United States remains at the forefront of scientific discovery,” U.S. Secretary of Energy Jennifer M. Granholm says in a statement. “The funding announced today gives the recipients the resources to find the answers to some of the most complex questions as they establish themselves as experts in their fields.”

This year's Texas researchers were:

  • Youtong Zheng, Assistant Professor Department of Earth and Atmospheric Sciences at the University of Houston: Zheng's work focuses on how air pollution in urban communities relates to the intensification of storms, known as the aerosol invigoration effect. This research aims to use the DOE's Simple Cloud-Resolving E3SM Atmosphere Model (SCREAM) to improve the predictability of coastal-urban systems and improve DOE models.
  • Philip Adsley, Assistant Professor Department of Physics & Astronomy and Cyclotron Institute at Texas A&M University: Adsley looks at the dipole response of nuclei. The research will "develop independent calibration standards for dipole response measurements to validate modern experimental studies and investigate historical experimental discrepancies," according to an abstract. Experiments will be performed at Texas A&M, in Germany and in South Africa.
  • Omar Valsson, Assistant Professor Department of Chemistry at the University of North Texas: Valsson's research considers the polymorphism of molecular crystals. The research looks to develop a free energy sampling method for polymorphic transitions that can be applied to a wide range of molecular crystal systems. The findings have applications in chemistry, materials science, and the pharmaceutical and semiconductor industries, according to an abstract.

Since the DOE launched the Early Career Research Program in 2010 it has made 868 awards to university and National Lab researchers.

Earlier this summer the DOE's Advanced Research Projects Agency-Energy, or ARPA-E, announced $100 million in funding for its SCALEUP program at a Rice University event. Joe Zhou, CEO of Houston-based Quidnet Energy, spoke at the event on how the DOE funding benefitted his company.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

ExxonMobil revs up EV pilot in Permian Basin

seeing green

ExxonMobil has upgraded its Permian Basin fleet of trucks with sustainability in mind.

The Houston-headquartered company announced a new pilot program last week, rolling out 10 new all-electric pickup trucks at its Cowboy Central Delivery Point in southeast New Mexico. It's the first time the company has used EVs in any of its upstream sites, including the Permian Basin.

“We expect these EV trucks will require less maintenance, which will help reduce cost, while also contributing to our plan to achieve net zero Scope 1 and 2 emissions in our Permian operations by 2030," Kartik Garg, ExxonMobil's New Mexico production manager, says in a news release.

ExxonMobil has already deployed EV trucks at its facilities in Baytown, Beaumont, and Baton Rouge, but the Permian Basin, which accounts for about half of ExxonMobil's total U.S. oil production, is a larger site. The company reports that "a typical vehicle there can log 30,000 miles a year."

The EV rollout comes after the company announced last year that it plans to be a major supplier of lithium for EV battery technology.

At the end of last year, ExxonMobil increased its financial commitment to implementing more sustainable solutions. The company reported that it is pursuing more than $20 billion of lower-emissions opportunities through 2027.

Cowboys and the EVs of the Permian Basin | ExxonMobilyoutu.be

Energy industry veteran named CEO of Houston hydrogen co.

GOOD AS GOLD

Cleantech startup Gold H2, a spinout of Houston-based energy biotech company Cemvita, has named oil and gas industry veteran Prabhdeep Singh Sekhon as its CEO.

Sekhon previously held roles at companies such as NextEra Energy Resources and Hess. Most recently, he was a leader on NextEra’s strategy and business development team.

Gold H2 uses microbes to convert oil and gas in old, uneconomical wells into clean hydrogen. The approach to generating clean hydrogen is part of a multibillion-dollar market.

Gold H2 spun out of Cemvita last year with Moji Karimi, co-founder of Cemvita, leading the transition. Gold H2 spun out after successfully piloting its microbial hydrogen technology, producing hydrogen below 80 cents per kilogram.

The Gold H2 venture had been a business unit within Cemvita.

“I was drawn to Gold H2 because of its innovative mission to support the U.S. economy in this historical energy transition,” Sekhon says in a news release. “Over the last few years, my team [at NextEra] was heavily focused on the commercialization of clean hydrogen. When I came across Gold H2, it was clear that it was superior to each of its counterparts in both cost and [carbon intensity].”

Gold H2 explains that oil and gas companies have wrestled for decades with what to do with exhausted oil fields. With Gold H2’s first-of-its-kind biotechnology, these companies can find productive uses for oil wells by producing clean hydrogen at a low cost, the startup says.

“There is so much opportunity ahead of Gold H2 as the first company to use microbes in the subsurface to create a clean energy source,” Sekhon says. “Driving this dynamic industry change to empower clean hydrogen fuel production will be extremely rewarding.”

–––

This article originally ran on InnovationMap.

Q&A: CEO of bp-acquired RNG producer on energy sustainability, stability

the view from heti

bp’s Archaea Energy is the largest renewable natural gas (RNG) producer in the U.S., with an industry leading RNG platform and expertise in developing, constructing and operating RNG facilities to capture waste emissions and convert them into low carbon fuel.

Archaea partners with landfill owners, farmers and other facilities to help them transform their feedstock sources into RNG and convert these facilities into renewable energy centers.

Starlee Sykes, Archaea Energy’s CEO, shared more about bp’s acquisition of the company and their vision for the future.

HETI: bp completed its acquisition of Archaea in December 2022. What is the significance of this acquisition for bp, and how does it bolster Archaea’s mission to create sustainability and stability for future generations?  

Starlee Sykes: The acquisition was an important move to accelerate and grow our plans for bp’s bioenergy transition growth engine, one of five strategic transition growth engines. Archaea will not only play a pivotal role in bp’s transition and ambition to reach net zero by 2050 or sooner but is a key part of bp’s plan to increase biogas supply volumes.

HETI: Tell us more about how renewable natural gas is used and why it’s an important component of the energy transition?  

SS: Renewable natural gas (RNG) is a type of biogas generated by decomposing organic material at landfill sites, anaerobic digesters and other waste facilities – and demand for it is growing. Our facilities convert waste emissions into renewable natural gas. RNG is a lower carbon fuel, which according to the EPA can help reduce emissions, improve local air quality, and provide fuel for homes, businesses and transportation. Our process creates a productive use for methane which would otherwise be burned or vented to the atmosphere. And in doing so, we displace traditional fossil fuels from the energy system.

HETI: Archaea recently brought online a first-of-its-kind RNG plant in Medora, Indiana. Can you tell us more about the launch and why it’s such a significant milestone for the company?  

SS:Archaea’s Medora plant came online in October 2023 – it was the first Archaea RNG plant to come online since bp’s acquisition. At Medora, we deployed the Archaea Modular Design (AMD) which streamlines and accelerates the time it takes to build our plants. Traditionally, RNG plants have been custom-built, but AMD allows plants to be built on skids with interchangeable components for faster builds.

HETI: Now that the Medora plant is online, what does the future hold? What are some of Archaea’s priorities over the next 12 months and beyond?  

SS: We plan to bring online around 15 RNG plants in each of 2024 and 2025. Archaea has a development pipeline of more than 80 projects that underpin the potential for around five-fold growth in RNG production by 2030.

We will continue to operate around 50 sites across the US – including RNG plants, digesters and landfill gas-to-electric facilities.

And we are looking to the future. For example, at our Assai plant in Pennsylvania, the largest RNG plant in the US, we are in the planning stages to drill a carbon capture sequestration (CCS) appraisal well to determine if carbon dioxide sequestration could be feasible at this site, really demonstrating our commitment to decarbonization and the optionality in value we have across our portfolio.

HETI: bp has had an office in Washington, DC for many years. Can you tell us more about the role that legislation has to play in the energy transition? 

SS: Policy can play a critical role in advancing the energy transition, providing the necessary support to accelerate reductions in greenhouse gas emissions. We actively advocate for such policies through direct lobbying, formal comments and testimony, communications activities and advertising. We also advocate with regulators to help inform their rulemakings, as with the US Environmental Protection Agency to support the finalization of a well-designed electric Renewable Identification Number (eRIN) program.

HETI: Science and innovation are key drivers of the energy transition. In your view, what are some of most exciting innovations supporting the goal to reach net-zero emissions?  

SS: We don’t just talk about innovation in bp, we do it – and have been for many years. This track record gives us confidence in continuing to transform, change and innovate at pace and scale. The Archaea Modular Design is a great example of the type of innovation that bp supports which enables us to pursue our goal of net-zero emissions.

Beyond Archaea, we have engineers and scientists across bp who are working on innovative solutions with the goal of lowering emissions. We believe that we need to invest in lower carbon energy to meet the world’s climate objectives, but we also need to invest in today’s energy system, which is primarily hydrocarbon focused. It’s an ‘and’ not ‘or’ approach, and we need both to be successful.

Learn more about Archaea and the work they are doing in energy transition.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.