game on

DOE taps 3 Houston-area schools for student competition

Teams from three Houston-area universities have been named to the DOE's annual competition. Photo via energy.gov

The U.S. Department of Energy’s Office of Technology Transitions selected 225 teams from 117 schools from 39 states — including three Houston-area universities — to participate in its annual startup competition.

University of Houston, Rice University, and Texas A&M University will compete in the EnergyTech University Prize, known as EnergyTech UP, in the 2024 Student Track. See the full list here.

The EnergyTech UP Student Track tasks collegiate teams to develop “actionable plans for business and commercialization opportunities around high-potential energy technologies.”

The competitors in the event, which is in its third year, will also receive free access to OTT’s Energy I-Corps curriculum. Finalists will receive mentorship from industry leaders on their proposals. Through three phases — Explore, Refine, and Pitch — with Bonus Prize winners also being selected along the way, the teams will compete for more than $400,000 in cash prizes.

Teams will present their proposals to a panel of judges in the hopes of being selected as a finalist in the first phase, the regional Explore Event.

Finalists will refine their ideas before pitching their complete plans at Zpryme’s 2024 Energy Thought Summit in April in Austin, Texas. The goal is for EnergyTech UP’s winning teams to have successfully identified promising energy technology, carefully assess its market potential, and create a business plan.

“We see immense value in supporting the next generation of clean energy leaders through EnergyTech UP” said DOE Chief Commercialization Officer and Director of OTT, Dr. Vanessa Z. Chan in a news release. “These teams are working to develop attainable, equitable, scalable energy technologies and business opportunities. They have the potential to profoundly impact the cleantech industry, and we’re proud to provide resources that can help bolster their ideas.”

Other Texas universities selected this year include:

  • The University of Texas at Austin
  • The University of Texas at El Paso
  • Texas Tech University

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News