Three researchers from Texas are among 93 early career scientists who will receive a collective $135 million in funding for projects lasting up to five years in duration. Photo via Getty Images

The U.S. Department of Energy has awarded funds to three Texas university researchers as part of its 2023 Early Career Research Program.

The researchers from Texas A&M University, University of Houston, and University of North Texas are among 93 early career scientists who will receive a collective $135 million in funding for projects lasting up to five years in duration. The DOE said in a statement that $69 million of those funds will be doled out in Fiscal Year 2023.

The funding is part of the DOE Office of Science’s Early Career Research Program which aims to support U.S. scientists during their formative years. Awardees must be an untenured, tenure-track assistant or associate professor at a U.S. academic institution or a full-time employee at a DOE National Laboratory who received a Ph.D. within the past 12 years to receive the funding.

“Supporting America’s scientists and researchers early in their careers will ensure the United States remains at the forefront of scientific discovery,” U.S. Secretary of Energy Jennifer M. Granholm says in a statement. “The funding announced today gives the recipients the resources to find the answers to some of the most complex questions as they establish themselves as experts in their fields.”

This year's Texas researchers were:

  • Youtong Zheng, Assistant Professor Department of Earth and Atmospheric Sciences at the University of Houston: Zheng's work focuses on how air pollution in urban communities relates to the intensification of storms, known as the aerosol invigoration effect. This research aims to use the DOE's Simple Cloud-Resolving E3SM Atmosphere Model (SCREAM) to improve the predictability of coastal-urban systems and improve DOE models.
  • Philip Adsley, Assistant Professor Department of Physics & Astronomy and Cyclotron Institute at Texas A&M University: Adsley looks at the dipole response of nuclei. The research will "develop independent calibration standards for dipole response measurements to validate modern experimental studies and investigate historical experimental discrepancies," according to an abstract. Experiments will be performed at Texas A&M, in Germany and in South Africa.
  • Omar Valsson, Assistant Professor Department of Chemistry at the University of North Texas: Valsson's research considers the polymorphism of molecular crystals. The research looks to develop a free energy sampling method for polymorphic transitions that can be applied to a wide range of molecular crystal systems. The findings have applications in chemistry, materials science, and the pharmaceutical and semiconductor industries, according to an abstract.

Since the DOE launched the Early Career Research Program in 2010 it has made 868 awards to university and National Lab researchers.

Earlier this summer the DOE's Advanced Research Projects Agency-Energy, or ARPA-E, announced $100 million in funding for its SCALEUP program at a Rice University event. Joe Zhou, CEO of Houston-based Quidnet Energy, spoke at the event on how the DOE funding benefitted his company.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Wind and solar supplied over a third of ERCOT power, report shows

power report

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA).

The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024.

Together, wind and solar supplied 36 percent of ERCOT’s electricity in the first nine months of 2025.

Heavier reliance on wind and solar power comes amid greater demand for ERCOT electricity. In the first nine months of 2025, ERCOT recorded the fastest growth in electricity demand (5 percent) among U.S. power grids compared with the same period last year, according to the report.

“ERCOT’s electricity demand is forecast to grow faster than that of any other grid operator in the United States through at least 2026,” the report says.

EIA forecasts demand for ERCOT electricity will climb 14 percent in the first nine months of 2026 compared with the same period this year. This anticipated jump coincides with a number of large data centers and cryptocurrency mining facilities coming online next year.

The ERCOT grid covers about 90 percent of Texas’ electrical load.

Micro-nuclear reactor to launch next year at Texas A&M innovation campus

nuclear pilot

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”