Houston biotech company Gold H2's proprietary biotechnology has generated hydrogen from depleted oil reservoirs in a California field trial. Photo courtesy Gold H2.

Houston climatech company Gold H2 completed its first field trial that demonstrates subsurface bio-stimulated hydrogen production, which leverages microbiology and existing infrastructure to produce clean hydrogen.

Gold H2 is a spinoff of another Houston biotech company, Cemvita.

“When we compare our tech to the rest of the stack, I think we blow the competition out of the water," Prabhdeep Singh Sekhon, CEO of Gold H2 Sekhon previously told Energy Capital.

The project represented the first-of-its-kind application of Gold H2’s proprietary biotechnology, which generates hydrogen from depleted oil reservoirs, eliminating the need for new drilling, electrolysis or energy-intensive surface facilities. The Woodlands-based ChampionX LLC served as the oilfield services provider, and the trial was conducted in an oilfield in California’s San Joaquin Basin.

According to the company, Gold H2’s technology could yield up to 250 billion kilograms of low-carbon hydrogen, which is estimated to provide enough clean power to Los Angeles for over 50 years and avoid roughly 1 billion metric tons of CO2 equivalent.

“This field trial is tangible proof. We’ve taken a climate liability and turned it into a scalable, low-cost hydrogen solution,” Sekhon said in a news release. “It’s a new blueprint for decarbonization, built for speed, affordability, and global impact.”

Highlights of the trial include:

  • First-ever demonstration of biologically stimulated hydrogen generation at commercial field scale with unprecedented results of 40 percent H2 in the gas stream.
  • Demonstrated how end-of-life oilfield liabilities can be repurposed into hydrogen-producing assets.
  • The trial achieved 400,000 ppm of hydrogen in produced gases, which, according to the company,y is an “unprecedented concentration for a huff-and-puff style operation and a strong indicator of just how robust the process can perform under real-world conditions.”
  • The field trial marked readiness for commercial deployment with targeted hydrogen production costs below $0.50/kg.

“This breakthrough isn’t just a step forward, it’s a leap toward climate impact at scale,” Jillian Evanko, CEO and president at Chart Industries Inc., Gold H2 investor and advisor, added in the release. “By turning depleted oil fields into clean hydrogen generators, Gold H2 has provided a roadmap to produce low-cost, low-carbon energy using the very infrastructure that powered the last century. This changes the game for how the world can decarbonize heavy industry, power grids, and economies, faster and more affordably than we ever thought possible.”

Permascand USA's new Houston facility will manufacture high-performance electrodes from new and recycled materials. Photo via Getty Images

DOE grants $13.7M tax credit to power Houston clean hydrogen project

power move

Permascand USA Inc., a subsidiary of Swedish manufacturing company Permascand, has been awarded a $13.7 million tax credit by the U.S. Department of Energy (DOE) to expand across the country, including a new clean hydrogen manufacturing facility in Houston.

The new Houston facility will manufacture high-performance electrodes from new and recycled materials.

"We are proud to receive the support of the U.S. Department of Energy within their objective for clean energy," Permascand CEO Fredrik Herlitz said in a news release. "Our mission is to provide electrochemical solutions for the global green transition … This proposed project leverages Permascand’s experience in advanced technologies and machinery and will employ a highly skilled workforce to support DOE’s initiative in lowering the levelized cost of hydrogen.”

The funding comes from the DOE’s Qualifying Advanced Energy Project Credit program, which focuses on clean energy manufacturing, recycling, industrial decarbonization and critical materials projects.

The Permascand proposal was one of 140 projects selected by the DOE with over 800 concept papers submitted last summer. The funding is part of $6 billion in tax credits in the second round of the Qualifying Advanced Energy Project Credit program that was deployed in January.

So far credits have been granted to approximately 250 projects across more than 40 states, with project investments over $44 billion dollars, according to the Department of Treasury. Read more here.
Texas has the most utility-scale solar capacity installed and is home to 20 percent of the overall U.S. solar fleet. Photo via Getty Images

Texas passes California on national report of top solar states

by the numbers

For the first time, Texas has passed California in the second quarter of 2024 to become the top solar state in the country.

The American Clean Power Association's quarterly market report found that, by adding 3,293 megawatts of new solar year-to-date, Texas has the most utility-scale solar capacity installed, comprising 20 percent of the overall U.S. solar fleet. The American Clean Power Association, which represents over 800 energy storage, wind, utility-scale solar, transmission, and clean hydrogen companies, found that Texas is home to 21,932 megawatts of capacity,

By utilizing clean energy initiatives, Texas included 1.6 gigawatts of new solar, 574 megawatts of storage, and 366 megawatts of onshore wind. With more than 28,000 megawatts, Texas had the highest volume of clean power development capacity in the second quarter. About 163,000 megawatts of capacity overall are in the works throughout the United States. Texas ranks No. 1 for total operating wind capacity and total operating solar capacity, and comes in second for operating storage capacity.

Texas again led in production levels with clean power construction projects nationally, which boasts more than 19,000 megawatts worth of clean power energy currently under construction. With almost 28.3 gigawatts in advanced development or under construction, Texas continues to come in at No.1, as California is next with over 16.4 gigawatts in the state’s project pipeline.

California added more than 1,900 megawatts of new clean power capacity in the second quarter, with its clean energy development behavior leaning more towards adding storage, which amounts to 60 percent of California’s year-to-date clean power installations.

According to the report from SmartAsset, the Lone Star State has the most clean energy capacity at 56,405 megawatts due to its sheer size for solar capacity, but continues to trail states with similar geographic characteristics in overall clean energy prevalence.

Another report published by the U.S. Energy Information Administration, says Texas will make up 35 percent of new utility-scale solar capacity in the U.S. this year, followed by California (10 percent) and Florida (6 percent).

While Texas’ solar efforts have shown positive trends, the state ranked No. 38 in a report by WalletHub that determined it was the thirteenth least green state.

Gold H2 has aligned itself with an oil and gas company, making its Black 2 Gold microbial technology available for the first time. Photo via cemvita.com

Houston clean hydrogen producer teams up with O&G for series of pilots

piling on pilots

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

Bracewell announced that Jennifer Speck has joined the firm's tax department as a partner in the Houston office. Photo via LinkedIn

Energy-focused law firm names new Houston partner

new hire

A law and government relations firm serving energy, infrastructure, finance, and technology industries has named a new Houston partner.

Bracewell announced that Jennifer Speck has joined the firm's tax department as a partner in the Houston office. Speck will advise clients on energy transition tax incentives.

Some of her experiences include onshore and offshore wind, solar, carbon capture, clean hydrogen and clean fuel projects. She recently served as senior manager of tax and regulatory compliance at Navigator CO2 Ventures LLC. She graduated in 2010 with a B.F.A. in mental health psychology from Northeastern State University, and received her J.D., with honors, from The University of Tulsa College of Law in 2012.

"Jenny has significant experience in critical tax credits for carbon capture and other energy transition projects," Elizabeth L. McGinley, chair of Bracewell's tax department, says in a news release. "Her knowledge of these, and other, tax incentives strengthens our ability to help clients take full advantage of the tax benefits available under the Inflation Reduction Act."

Nationally recognized, Bracewell's tax department is known for its experience involving tax matters related to the energy industry. Bracewell has also led the development of one of the country's largest multidisciplinary energy transition legal teams.

These five Houston-based energy transition research news articles trended this year on EnergyCapital. Image via Getty Images

From carbon studies to hydrogen solutions, here's what Houston energy research news trended in 2023

Year in Review

Editor's note: As the year comes to a close, EnergyCapital is looking back at the year's top stories in Houston energy transition. When it comes to the future of energy, Houston has tons of forward-thinking minds hard at work researching solutions to climate change and its impact on Earth. The following research-focused articles that stood out to readers this year — be sure to click through to read the full story.

New study from Houston research team looks at how the Earth cycles fossil carbon

A Rice University professor studied the Earth's carbon cycle in the Rio Madre de Dios to shed light on current climate conditions. Photo courtesy of Mark Torres/Rice University

Carbon cycles through Earth, its inhabitants, and its atmosphere on a regular basis, but not much research has been done on that process and qualifying it — until now.

In a recent study of a river system extending from the Peruvian Andes to the Amazon floodplains, Rice University’s Mark Torres and collaborators from five institutions proved that that high rates of carbon breakdown persist from mountaintop to floodplain.

“The purpose of this research was to quantify the rate at which Earth naturally releases carbon dioxide into the atmosphere and find out whether this process varies across different geographic locations,” Torres says in a news release. Click here to continue reading article from November.

Rice University team breaks records with new sunlight-to-hydrogen device

Rice University engineers have created a device that absorbs light, converts it into electricity, and then uses the electricity to split water molecules and generate hydrogen. Photo courtesy Gustavo Raskoksy/Rice University

A team of Rice University engineers have developed a scalable photoelectrochemical cell that converts sunlight into clean hydrogen at a record-setting pace.

The lab led by Aditya Mohite, an associate professor at Rice, published the findings in a study in Nature Communications late last month, in collaboration with the National Renewable Energy Laboratory, which is backed by the Department of Energy. In it, the team details how they created a device that absorbs light, converts it into electricity, and then uses the electricity to split water molecules and generate hydrogen.

Austin Fehr, a chemical and biomolecular engineering doctoral student at Rice and one of the study’s lead authors, says in a statement that the device "could open up the hydrogen economy and change the way humans make things from fossil fuel to solar fuel." Click here to continue reading article from August.

Houston research shows how much hydrogen-powered vehicles would cost at the pump

Researchers at the University of Houston are proposing that supplying hydrogen for transportation in the greater Houston area could also be profitable. Photo via UH.edu

It's generally understood that transitioning away from gas-powered vehicles will help reduce the 230 million metric tons of carbon dioxide gas released each year by the transportation sector in Texas.

Now, researchers at the University of Houston are proposing that supplying hydrogen for transportation in the greater Houston area could also be profitable.

The research team has done the math. In a white paper, "Competitive Pricing of Hydrogen as an Economic Alternative to Gasoline and Diesel for the Houston Transportation Sector," the team compared three hydrogen generation processes—steam methane reforming (SMR), SMR with carbon capture (SMRCC), and electrolysis using grid electricity and water—and provided cost estimates and delivery models for each. Click here to continue reading article from November.

Houston university to lead new NSF-back flooding study

A Rice University study will consider how "design strategies aimed at improving civic engagement in stormwater infrastructure could help reduce catastrophic flooding." Photo via Getty Images

Houston will be the setting of a new three-year National Science Foundation-funded study that focuses on a phenomenon the city is quite familiar with: flooding.

Conducted by Rice University, the study will consider how "design strategies aimed at improving civic engagement in stormwater infrastructure could help reduce catastrophic flooding," according to a statement.

The team will begin its research in the Trinity/Houston Gardens neighborhood and will implement field research, participatory design work and hydrological impact analyses.

Rice professor of anthropology Dominic Boyer and Rice's Gus Sessions Wortham Professor of Architecture Albert Pope are co-principal investigators on the study. They'll be joined by Phil Bedient, director of the Severe Storm Prediction, Education and Evacuation from Disasters Center at Rice, and Jessica Eisma, a civil engineer at the University of Texas at Arlington. Click here to continue reading article from October.

Research team lands DOE grant to investigate carbon storage in soil

Two Rice University researchers just received DOE funding for carbon storage research. Photo by Gustavo Raskosky/Rice University

Two researchers at Rice University are digging into how soil is formed with hopes to better understand carbon storage and potential new methods for combating climate change.

Backed by a three-year grant from the Department of Energy, the research is led by Mark Torres, an assistant professor of Earth, environmental and planetary sciences; and Evan Ramos, a postdoctoral fellow in the Torres lab. Co-investigators include professors and scientists with the Brown University, University of Massachusetts Amherst and Lawrence Berkeley National Laboratory.

According to a release from Rice, the team aims to investigate the processes that allow soil to store roughly three times as much carbon as organic matter compared to Earth's atmosphere.

“Maybe there’s a way to harness Earth’s natural mechanisms of sequestering carbon to combat climate change,” Torres said in a statement. “But to do that, we first have to understand how soils actually work.” Click here to continue reading article from September.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Spring-based private equity firm acquires West Texas wind farm

power deal

Spring-based private equity firm Arroyo Investors has teamed up with ONCEnergy, a Portland, Oregon-based developer of clean energy projects, to buy a 60-megawatt wind farm southeast of Amarillo.

Skyline Renewables, which acquired the site, known as the Whirlwind Energy Center, in 2018, was the seller. The purchase price wasn’t disclosed.

Whirlwind Energy Center, located in Floyd County, West Texas, comprises 26 utility-scale wind turbines. The wind farm, built in 2007, supplies power to Austin Energy.

“The acquisition reflects our focus on value-driven investments with strong counterparties, a solid operating track record, and clear relevance to markets with growing capacity needs,” Brandon Wax, a partner at Arroyo, said in a press release. “Partnering with ONCEnergy allows us to leverage deep operational expertise while expanding our investment footprint in the market.”

Arroyo focuses on energy infrastructure investments in the Americas. Its portfolio includes Spring-based Seaside LNG, which produces liquefied natural gas and LNG transportation services.

Last year, Arroyo closed an investment fund with more than $1 billion in total equity commitments.

Since its launch in 2003, Arroyo has “remained committed to investing in high-quality assets, creating value and positioning assets for exit within our expected hold period,” founding partner Chuck Jordan said in 2022.

$524M Texas Hill Country solar project powered by Hyundai kicks off

powering up

Corporate partners—including Hyundai Engineering & Construction, which maintains a Houston office—kicked off a $524 million solar power project in the Texas Hill Country on Jan. 27.

The 350-megawatt, utility-scale Lucy Solar Project is scheduled to go online in mid-2027 and represents one of the largest South Korean-led investments in U.S. renewable energy.

The solar farm, located on nearly 2,900 acres of ranchland in Concho County, will generate 926 gigawatt-hours of solar power each year. That’s enough solar power to supply electricity to roughly 65,000 homes in Texas.

Power to be produced by the hundreds of thousands of the project’s solar panels has already been sold through long-term deals to buyers such as Starbucks, Workday and Plano-based Toyota Motor North America.

The project is Hyundai Engineering & Construction’s largest solar power initiative outside Asia.

“The project is significant because it’s the first time Hyundai E&C has moved beyond its traditional focus on overseas government contracts to solidify its position in the global project financing market,” the company, which is supplying solar modules for the project, says on its website.

Aside from Hyundai Engineering & Construction, a subsidiary of automaker Hyundai, Korean and U.S. partners in the solar project include Korea Midland Power, the Korea Overseas Infrastructure & Urban Development Corp., solar panel manufacturer Topsun, investment firm EIP Asset Management, Primoris Renewable Energy and High Road Energy Marketing.

Primoris Renewable Energy is an Aurora, Colorado-based subsidiary of Dallas-based Primoris Services Corp. Another subsidiary, Primoris Energy Services, is based in Houston.

High Road is based in the Austin suburb of West Lake Hills.

“The Lucy Solar Project shows how international collaboration can deliver local economic development and clean power for Texas communities and businesses,” says a press release from the project’s partners.

Elon Musk vows to put data centers in space and run them on solar power

Outer Space

Elon Musk vowed this week to upend another industry just as he did with cars and rockets — and once again he's taking on long odds.

The world's richest man said he wants to put as many as a million satellites into orbit to form vast, solar-powered data centers in space — a move to allow expanded use of artificial intelligence and chatbots without triggering blackouts and sending utility bills soaring.

To finance that effort, Musk combined SpaceX with his AI business on Monday, February 2, and plans a big initial public offering of the combined company.

“Space-based AI is obviously the only way to scale,” Musk wrote on SpaceX’s website, adding about his solar ambitions, “It’s always sunny in space!”

But scientists and industry experts say even Musk — who outsmarted Detroit to turn Tesla into the world’s most valuable automaker — faces formidable technical, financial and environmental obstacles.

Feeling the heat

Capturing the sun’s energy from space to run chatbots and other AI tools would ease pressure on power grids and cut demand for sprawling computing warehouses that are consuming farms and forests and vast amounts of water to cool.

But space presents its own set of problems.

Data centers generate enormous heat. Space seems to offer a solution because it is cold. But it is also a vacuum, trapping heat inside objects in the same way that a Thermos keeps coffee hot using double walls with no air between them.

“An uncooled computer chip in space would overheat and melt much faster than one on Earth,” said Josep Jornet, a computer and electrical engineering professor at Northeastern University.

One fix is to build giant radiator panels that glow in infrared light to push the heat “out into the dark void,” says Jornet, noting that the technology has worked on a small scale, including on the International Space Station. But for Musk's data centers, he says, it would require an array of “massive, fragile structures that have never been built before.”

Floating debris

Then there is space junk.

A single malfunctioning satellite breaking down or losing orbit could trigger a cascade of collisions, potentially disrupting emergency communications, weather forecasting and other services.

Musk noted in a recent regulatory filing that he has had only one “low-velocity debris generating event" in seven years running Starlink, his satellite communications network. Starlink has operated about 10,000 satellites — but that's a fraction of the million or so he now plans to put in space.

“We could reach a tipping point where the chance of collision is going to be too great," said University at Buffalo's John Crassidis, a former NASA engineer. “And these objects are going fast -- 17,500 miles per hour. There could be very violent collisions."

No repair crews

Even without collisions, satellites fail, chips degrade, parts break.

Special GPU graphics chips used by AI companies, for instance, can become damaged and need to be replaced.

“On Earth, what you would do is send someone down to the data center," said Baiju Bhatt, CEO of Aetherflux, a space-based solar energy company. "You replace the server, you replace the GPU, you’d do some surgery on that thing and you’d slide it back in.”

But no such repair crew exists in orbit, and those GPUs in space could get damaged due to their exposure to high-energy particles from the sun.

Bhatt says one workaround is to overprovision the satellite with extra chips to replace the ones that fail. But that’s an expensive proposition given they are likely to cost tens of thousands of dollars each, and current Starlink satellites only have a lifespan of about five years.

Competition — and leverage

Musk is not alone trying to solve these problems.

A company in Redmond, Washington, called Starcloud, launched a satellite in November carrying a single Nvidia-made AI computer chip to test out how it would fare in space. Google is exploring orbital data centers in a venture it calls Project Suncatcher. And Jeff Bezos’ Blue Origin announced plans in January for a constellation of more than 5,000 satellites to start launching late next year, though its focus has been more on communications than AI.

Still, Musk has an edge: He's got rockets.

Starcloud had to use one of his Falcon rockets to put its chip in space last year. Aetherflux plans to send a set of chips it calls a Galactic Brain to space on a SpaceX rocket later this year. And Google may also need to turn to Musk to get its first two planned prototype satellites off the ground by early next year.

Pierre Lionnet, a research director at the trade association Eurospace, says Musk routinely charges rivals far more than he charges himself —- as much as $20,000 per kilo of payload versus $2,000 internally.

He said Musk’s announcements this week signal that he plans to use that advantage to win this new space race.

“When he says we are going to put these data centers in space, it’s a way of telling the others we will keep these low launch costs for myself,” said Lionnet. “It’s a kind of powerplay.”