Texas has the most utility-scale solar capacity installed and is home to 20 percent of the overall U.S. solar fleet. Photo via Getty Images

For the first time, Texas has passed California in the second quarter of 2024 to become the top solar state in the country.

The American Clean Power Association's quarterly market report found that, by adding 3,293 megawatts of new solar year-to-date, Texas has the most utility-scale solar capacity installed, comprising 20 percent of the overall U.S. solar fleet. The American Clean Power Association, which represents over 800 energy storage, wind, utility-scale solar, transmission, and clean hydrogen companies, found that Texas is home to 21,932 megawatts of capacity,

By utilizing clean energy initiatives, Texas included 1.6 gigawatts of new solar, 574 megawatts of storage, and 366 megawatts of onshore wind. With more than 28,000 megawatts, Texas had the highest volume of clean power development capacity in the second quarter. About 163,000 megawatts of capacity overall are in the works throughout the United States. Texas ranks No. 1 for total operating wind capacity and total operating solar capacity, and comes in second for operating storage capacity.

Texas again led in production levels with clean power construction projects nationally, which boasts more than 19,000 megawatts worth of clean power energy currently under construction. With almost 28.3 gigawatts in advanced development or under construction, Texas continues to come in at No.1, as California is next with over 16.4 gigawatts in the state’s project pipeline.

California added more than 1,900 megawatts of new clean power capacity in the second quarter, with its clean energy development behavior leaning more towards adding storage, which amounts to 60 percent of California’s year-to-date clean power installations.

According to the report from SmartAsset, the Lone Star State has the most clean energy capacity at 56,405 megawatts due to its sheer size for solar capacity, but continues to trail states with similar geographic characteristics in overall clean energy prevalence.

Another report published by the U.S. Energy Information Administration, says Texas will make up 35 percent of new utility-scale solar capacity in the U.S. this year, followed by California (10 percent) and Florida (6 percent).

While Texas’ solar efforts have shown positive trends, the state ranked No. 38 in a report by WalletHub that determined it was the thirteenth least green state.

Gold H2 has aligned itself with an oil and gas company, making its Black 2 Gold microbial technology available for the first time. Photo via cemvita.com

Houston clean hydrogen producer teams up with O&G for series of pilots

piling on pilots

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

Bracewell announced that Jennifer Speck has joined the firm's tax department as a partner in the Houston office. Photo via LinkedIn

Energy-focused law firm names new Houston partner

new hire

A law and government relations firm serving energy, infrastructure, finance, and technology industries has named a new Houston partner.

Bracewell announced that Jennifer Speck has joined the firm's tax department as a partner in the Houston office. Speck will advise clients on energy transition tax incentives.

Some of her experiences include onshore and offshore wind, solar, carbon capture, clean hydrogen and clean fuel projects. She recently served as senior manager of tax and regulatory compliance at Navigator CO2 Ventures LLC. She graduated in 2010 with a B.F.A. in mental health psychology from Northeastern State University, and received her J.D., with honors, from The University of Tulsa College of Law in 2012.

"Jenny has significant experience in critical tax credits for carbon capture and other energy transition projects," Elizabeth L. McGinley, chair of Bracewell's tax department, says in a news release. "Her knowledge of these, and other, tax incentives strengthens our ability to help clients take full advantage of the tax benefits available under the Inflation Reduction Act."

Nationally recognized, Bracewell's tax department is known for its experience involving tax matters related to the energy industry. Bracewell has also led the development of one of the country's largest multidisciplinary energy transition legal teams.

These five Houston-based energy transition research news articles trended this year on EnergyCapital. Image via Getty Images

From carbon studies to hydrogen solutions, here's what Houston energy research news trended in 2023

Year in Review

Editor's note: As the year comes to a close, EnergyCapital is looking back at the year's top stories in Houston energy transition. When it comes to the future of energy, Houston has tons of forward-thinking minds hard at work researching solutions to climate change and its impact on Earth. The following research-focused articles that stood out to readers this year — be sure to click through to read the full story.

New study from Houston research team looks at how the Earth cycles fossil carbon

A Rice University professor studied the Earth's carbon cycle in the Rio Madre de Dios to shed light on current climate conditions. Photo courtesy of Mark Torres/Rice University

Carbon cycles through Earth, its inhabitants, and its atmosphere on a regular basis, but not much research has been done on that process and qualifying it — until now.

In a recent study of a river system extending from the Peruvian Andes to the Amazon floodplains, Rice University’s Mark Torres and collaborators from five institutions proved that that high rates of carbon breakdown persist from mountaintop to floodplain.

“The purpose of this research was to quantify the rate at which Earth naturally releases carbon dioxide into the atmosphere and find out whether this process varies across different geographic locations,” Torres says in a news release. Click here to continue reading article from November.

Rice University team breaks records with new sunlight-to-hydrogen device

Rice University engineers have created a device that absorbs light, converts it into electricity, and then uses the electricity to split water molecules and generate hydrogen. Photo courtesy Gustavo Raskoksy/Rice University

A team of Rice University engineers have developed a scalable photoelectrochemical cell that converts sunlight into clean hydrogen at a record-setting pace.

The lab led by Aditya Mohite, an associate professor at Rice, published the findings in a study in Nature Communications late last month, in collaboration with the National Renewable Energy Laboratory, which is backed by the Department of Energy. In it, the team details how they created a device that absorbs light, converts it into electricity, and then uses the electricity to split water molecules and generate hydrogen.

Austin Fehr, a chemical and biomolecular engineering doctoral student at Rice and one of the study’s lead authors, says in a statement that the device "could open up the hydrogen economy and change the way humans make things from fossil fuel to solar fuel." Click here to continue reading article from August.

Houston research shows how much hydrogen-powered vehicles would cost at the pump

Researchers at the University of Houston are proposing that supplying hydrogen for transportation in the greater Houston area could also be profitable. Photo via UH.edu

It's generally understood that transitioning away from gas-powered vehicles will help reduce the 230 million metric tons of carbon dioxide gas released each year by the transportation sector in Texas.

Now, researchers at the University of Houston are proposing that supplying hydrogen for transportation in the greater Houston area could also be profitable.

The research team has done the math. In a white paper, "Competitive Pricing of Hydrogen as an Economic Alternative to Gasoline and Diesel for the Houston Transportation Sector," the team compared three hydrogen generation processes—steam methane reforming (SMR), SMR with carbon capture (SMRCC), and electrolysis using grid electricity and water—and provided cost estimates and delivery models for each. Click here to continue reading article from November.

Houston university to lead new NSF-back flooding study

A Rice University study will consider how "design strategies aimed at improving civic engagement in stormwater infrastructure could help reduce catastrophic flooding." Photo via Getty Images

Houston will be the setting of a new three-year National Science Foundation-funded study that focuses on a phenomenon the city is quite familiar with: flooding.

Conducted by Rice University, the study will consider how "design strategies aimed at improving civic engagement in stormwater infrastructure could help reduce catastrophic flooding," according to a statement.

The team will begin its research in the Trinity/Houston Gardens neighborhood and will implement field research, participatory design work and hydrological impact analyses.

Rice professor of anthropology Dominic Boyer and Rice's Gus Sessions Wortham Professor of Architecture Albert Pope are co-principal investigators on the study. They'll be joined by Phil Bedient, director of the Severe Storm Prediction, Education and Evacuation from Disasters Center at Rice, and Jessica Eisma, a civil engineer at the University of Texas at Arlington. Click here to continue reading article from October.

Research team lands DOE grant to investigate carbon storage in soil

Two Rice University researchers just received DOE funding for carbon storage research. Photo by Gustavo Raskosky/Rice University

Two researchers at Rice University are digging into how soil is formed with hopes to better understand carbon storage and potential new methods for combating climate change.

Backed by a three-year grant from the Department of Energy, the research is led by Mark Torres, an assistant professor of Earth, environmental and planetary sciences; and Evan Ramos, a postdoctoral fellow in the Torres lab. Co-investigators include professors and scientists with the Brown University, University of Massachusetts Amherst and Lawrence Berkeley National Laboratory.

According to a release from Rice, the team aims to investigate the processes that allow soil to store roughly three times as much carbon as organic matter compared to Earth's atmosphere.

“Maybe there’s a way to harness Earth’s natural mechanisms of sequestering carbon to combat climate change,” Torres said in a statement. “But to do that, we first have to understand how soils actually work.” Click here to continue reading article from September.

Baker Hughes rolls out new energy tech for hydrogen sector

upgraded

Houston-based energy technology company Baker Hughes is rolling out two new products — pressure sensors for the hydrogen sector.

Designed to provide long-term stability and withstand harsh conditions, the Druck pressure sensors are geared toward gas turbines, hydrogen production electrolysis, and hydrogen filling stations, the company says.

Gordon Docherty, general manager of the Druck product line, calls the new hydrogen technology “an exciting breakthrough in the world of pressure measurement.”

“Hydrogen plays a key role in the transition to a more sustainable, lower-emissions future but also poses challenges for infrastructure and equipment due to hydrogen embrittlement,” Docherty says in a news release.

Baker Hughes’ Druck hydrogen pressure sensors will be displayed September 27-28 at the Hydrogen Technology Expo Europe in Bremen, Germany.

The company’s other hydrogen products include compressors, valves, gas turbines, and pumps.

During its second-quarter earnings call in July, Baker Hughes reported that it’s boosting R&D spending for its “New Energy” strategy. This includes money earmarked for hydrogen technology. As of July, Baker Hughes had spent about $40 million this year on small-scale R&D projects.

The company has spent decades working on hydrogen innovations. It created the world’s first hydrogen compressor in 1962. And in 2008, it built the world’s first turbine running solely on hydrogen.

Baker Hughes’ advancements in hydrogen technology come as the market for clean hydrogen grows. A report published this year by professional services firm Deloitte predicts the global market for clean hydrogen will expand to $1.4 trillion per year by 2050, up from a projected $642 billion in 2030.

Learn more about the specific missions the Houston Energy Transition Initiative is focused on — from carbon management to finding funding. Photo via htxenergytransition.com

Houston: Where energy leaders create a low-carbon future

the view from heti

Houston is the energy capital of the world, and it faces a dual challenge: fulfilling growing global energy demand while actively reducing carbon dioxide emissions.

This is why energy leaders have come together at the Houston Energy Transition Initiative, within the Greater Houston Partnership, to strengthen the region’s position for an energy-abundant, low-carbon future. HETI’s impact work is conducted through sector-specific working groups that leverage Houston’s competitive advantage. These working groups include: Carbon Capture, Use and Storage (CCUS), Clean Hydrogen, Capital Formation, Power Management, and Industry Decarbonization.

Texas Gulf Coast as a hub for carbon management

The International Energy Agency (IEA) states that CCUS is a requirement to any realistic pathway to a low-carbon, even net-zero future. This is especially true in the Houston area, which is home to one of the nation’s largest concentrated sources of carbon dioxide. Houston has the geology, knowledge, and infrastructure to support CCUS at scale. The CCUS Working Group at HETI supports key policy enablers of scaling CCUS, including supporting the state to earn permitting authority (primacy) over carbon capture (Class VI) wells. The working group is also analyzing the cumulative impacts of carbon capture on the region’s existing infrastructure and identifying key infrastructure needs for CCUS to reach scale.

Gulf Coast preparing for clean hydrogen liftoff

The Clean Hydrogen working group has created an ecosystem for Houston to lead the clean hydrogen market. The Texas Gulf Coast region is currently home to the world’s largest hydrogen system. By assessing the impact of hydrogen on the economy and the environment, this working group is positioning Houston to be a leading clean hydrogen hub.

Houston as a leader in Industry decarbonization

Houston needs technologies including but not limited to clean hydrogen and CCUS for decarbonization. The HETI Decarbonization Working Group partners with the Mission Possible Partnership and Rocky Mountain Institute to provide a measurable baseline of emissions and identify recommendations for decarbonization pathways in the Houston region.

An energy-abundant, low-carbon future will impact our region’s power management

It is expected that there will be changes in supply and demand of electricity associated with proposed energy transition and decarbonization projects in the Houston area. HETI has partnered with Mission Possible Partnership and Rocky Mountain Institute to assess the impact of energy transition and decarbonization on the growth and resilience of Houston’s regional power grid and the transmission and distribution of energy.

Making Houston a hub for energy transition finance

Financing energy projects is extremely capital intensive. Houston currently serves as a hub for implementing new technologies, and it has the potential to become a major center for financing innovative energy solutions. This includes everything from more efficient, lower-carbon production of existing resources to technological breakthroughs in energy efficiency, renewables, energy storage, and nature-based solutions. For technological breakthroughs, Houston needs a consistent flow of capital to the region, including sources and financing models from venture capital to growth capital, to debt markets and government grants. HETI’s Capital Formation Working Group has mapped inflows and outflows of capital for the energy transition in Houston and found that we need to grow Houston’s capital inflows ten times by 2040 to $150 billion per year to lead the transition. The Working Group regularly convenes for learning sessions on capital markets.

Over the last year, HETI’s working groups have moved from strategy to impact. To learn more about the outcomes of these working groups, check out these resources.

------

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston climatech incubator names new CFO

onboarding

Greentown Labs, a climatech incubator with locations in Houston and Somerville, Massachusetts, has hired Naheed Malik as its chief financial officer. In her new role, she oversees finance, accounting and human resources.

Malik previously worked at American Tower Corp., an owner of wireless communication towers. During her 12-year tenure there, she was vice president of financial planning and analysis, and vice president of corporate finance.

Before American Tower, Malik led financial planning and analysis at Wolters Kluwer Health, and was a management consultant at Kearney and an audit CPA at EY.

Kevin Dutt, Greentown’s interim CEO, says in a news release that Malik’s “deep expertise will be a boon for Greentown as we seek to serve even more climatech startups in our home states of Massachusetts and Texas, and beyond.”

“I am delighted to join Greentown at such an exciting time in its organizational growth,” Malik says. “As a nonprofit that’s deeply dedicated to its mission of supporting climatech innovation, Greentown is poised to build on its impressive track record and expand its impact in the years to come.”

Greentown bills itself as North America’s largest incubator for climatech startups. Today, it’s home to more than 200 startups. Since its founding in 2011, Greentown has nurtured more than 575 startups that have raised over $8.2 billion in funding.

Last year, Greentown’s CEO and president Kevin Knobloch announced that he would be stepping down in July 2024, after less than a year in the role. The incubator. About a month before the announcement, Knobloch reported that Greentown would reduce its staff by 30 percent, eliminating roles in Boston and Houston. He noted changes in leadership, growth of the team and adjustments following the pandemic.

Greentown plans to announce its new permanent CEO by the end of the month.

Being prepared: Has the Texas grid been adequately winterized?

Winter in Texas

Houstonians may feel anxious as the city and state brace for additional freezing temperatures this winter. Every year since 2021’s Winter Storm Uri, Texans wonder whether the grid will keep them safe in the face of another winter weather event. The record-breaking cold temperatures of Uri exposed a crucial vulnerability in the state’s power and water infrastructure.

According to ERCOT’s 6-day supply and demand forecast from January 3, 2025, it expected plenty of generation capacity to meet the needs of Texans during the most recent period of colder weather. So why did the grid fail so spectacularly in 2021?

  1. Demand for electricity surged as millions of people tried to heat their homes.
  2. ERCOT was simply not prepared despite previous winter storms of similar intensity to offer lessons in similarities.
  3. The state was highly dependent on un-winterized natural gas power plants for electricity.
  4. The Texas grid is isolated from other states.
  5. Failures of communication and coordination between ERCOT, state officials, utility companies, gas suppliers, electricity providers, and power plants contributed to the devastating outages.

The domino effect resulted in power outages for millions of Texans, the deaths of hundreds of Texans, billions of dollars in damages, with some households going nearly a week without heat, power, and water. This catastrophe highlighted the need for swift and sweeping upgrades and protections against future extreme weather events.

Texas State Legislature Responds

Texas lawmakers proactively introduced and passed legislation aimed at upgrading the state’s power infrastructure and preventing repeated failures within weeks of the storm. Senate Bill 3 (SB3) measures included:

  • Requirements to weatherize gas supply chain and pipeline facilities that sell electric energy within ERCOT.
  • The ability to impose penalties of up to $1 million for violation of these requirements.
  • Requirement for ERCOT to procure new power sources to ensure grid reliability during extreme heat and extreme cold.
  • Designation of specific natural gas facilities that are critical for power delivery during energy emergencies.
  • Development of an alert system that is to be activated when supply may not be able to meet demand.
  • Requirement for the Public Utility Commission of Texas, or PUCT, to establish an emergency wholesale electricity pricing program.

Texas Weatherization by Natural Gas Plants

In a Railroad Commission of Texas document published May 2024 and geared to gas supply chain and pipeline facilities, dozens of solutions were outlined with weatherization best practices and approaches in an effort to prevent another climate-affected crisis from severe winter weather.

Some solutions included:

  • Installation of insulation on critical components of a facility.
  • Construction of permanent or temporary windbreaks, housing, or barriers around critical equipment to reduce the impact of windchill.
  • Guidelines for the removal of ice and snow from critical equipment.
  • Instructions for the use of temporary heat systems on localized freezing problems like heating blankets, catalytic heaters, or fuel line heaters.

According to Daniel Cohan, professor of environmental engineering at Rice University, power plants across Texas have installed hundreds of millions of dollars worth of weatherization upgrades to their facilities. In ERCOT’s January 2022 winterization report, it stated that 321 out of 324 electricity generation units and transmission facilities fully passed the new regulations.

Is the Texas Grid Adequately Winterized?

Utilities, power generators, ERCOT, and the PUCT have all made changes to their operations and facilities since 2021 to be better prepared for extreme winter weather. Are these changes enough? Has the Texas grid officially been winterized?

This season, as winter weather tests Texans, residents may potentially experience localized outages. When tree branches cannot support the weight of the ice, they can snap and knock out power lines to neighborhoods across the state. In the instance of a downed power line, we must rely on regional utilities to act quickly to restore power.

The specific legislation enacted by the Texas state government in response to the 2021 disaster addressed to the relevant parties ensures that they have done their part to winterize the Texas grid.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

This article first appeared on our sister site, InnovationMap.com.

Halliburton names 5 clean energy startups to latest incubator cohort

clean team

Halliburton Labs has named five companies to its latest cohort, including one from Texas.

All of the companies are working to help accelerate the future of the energy industry in different ways. The incubator aims to advance the companies’ commercialization with support from Halliburton's network, facilities and financing opportunities.

The five new members include:

  • 360 Energy, an Austin-based in-field computing company with technology that is able to capture flared or stranded gas and monetize it through modular data centers
  • Cella, a New York-based mineral storage company that provides end-to-end services, from resource assessment to proprietary injection technology, and monitoring techniques to provide geologic carbon storage solutions
  • Espiku, an engineering services company based in Bend, Oregon, that finds solutions that advance water and minerals recovery from brines and industrial-produced water streams
  • Mitico, based in Los Angeles, that offers technology services to capture carbon dioxide by using its patent-pending granulated metal carbonate sorption technology (GMC) that captures more than 95% of the CO2 emitted from post-combustion point sources
  • NuCube, a Pasadena, California-based company with a nuclear fission reactor under development

“We welcome these innovative energy startups,” Dale Winger, managing director of Halliburton Labs, said in a news release. “We are eager to help these participant companies use their time and capital efficiently to progress new solutions that meet industry requirements for cost, reliability, and sustainability.”

Halliburton Labs also announced that it will host the Finalists Pitch Day on March 26, 2025, in Denver for energy and decarbonization industry innovators, startups and investors ahead of the National Renewable Energy Laboratory (NREL) Industry Growth Forum. The pitch event will precede registration and the opening reception of the NREL forum. Find more information here.

Adena Power, an Ohio-based clean energy startup, was the latest to join Halliburton Labs prior to the new cohort. The company used three patented materials to produce a sodium-based battery that delivers clean, safe and long-lasting energy storage.

The incubator also named San Francisco-based venture capital investor Pulakesh Mukherjee, partner at Imperative Ventures, which specializes in hard tech decarbonization startups, to its advisory board last spring.

Read more about the incubator's 2023 cohort here.