planting climate change impact

Research team lands DOE grant to investigate carbon storage in soil

Two Rice University researchers just received DOE funding for carbon storage research. Photo by Gustavo Raskosky/Rice University

Two researchers at Rice University are digging into how soil is formed with hopes to better understand carbon storage and potential new methods for combating climate change.

Backed by a three-year grant from the Department of Energy, the research is led by Mark Torres, an assistant professor of Earth, environmental and planetary sciences; and Evan Ramos, a postdoctoral fellow in the Torres lab. Co-investigators include professors and scientists with the Brown University, University of Massachusetts Amherst and Lawrence Berkeley National Laboratory.

According to a release from Rice, the team aims to investigate the processes that allow soil to store roughly three times as much carbon as organic matter compared to Earth's atmosphere.

“Maybe there’s a way to harness Earth’s natural mechanisms of sequestering carbon to combat climate change,” Torres said in a statement. “But to do that, we first have to understand how soils actually work.”

The team will analyze samples collected from different areas of the East River watershed in Colorado. Prior research has shown that rivers have been great resources for investigating chemical reactions that have taken place as soil is formed. Additionally, research supports that "clay plays a role in storing carbon derived from organic sources," according to Rice.

"We want to know when and how clay minerals form because they’re these big, platy, flat minerals with a high surface area that basically shield the organic carbon in the soil," Ramos said in the statement. "We think they protect that organic carbon from breakdown and allow it to grow in abundance.”

Additionally, the researchers plan to create a model that better quantifies the stabilization of organic carbon over time. According to Torres, the model could provide a basis for predicting carbon dioxide changes in Earth's atmosphere.

"We’re trying to understand what keeps carbon in soils, so we can get better at factoring in their role in climate models and render predictions of carbon dioxide changes in the atmosphere more detailed and accurate,” Torres explained in the statement.

The DOE and Rice have partnered on a number of projects related to the energy transition in recent months. Last week, Rice announced that it would host the Carbon Management Community Summit this fall, sponsored by the DOE, and in partnership with the city of Houston and climate change-focused multimedia company Climate Now.

In July the DOE announced $100 million in funding for its SCALEUP program at an event for more than 100 energy innovators at the university.

Rice also recently opened its 250,000-square-foot Ralph S. O’Connor Building for Engineering and Science. The state-of-the-art facility is the new home for four key research areas at Rice: advanced materials, quantum science and computing, urban research and innovation, and the energy transition.

Trending News

A View From HETI

HEXASpec was founded by Rice Ph.D. candidates Tianshu Zhai and Chen-Yang Lin, who are a part of Lilie’s 2024 Innovation Fellows program. Photo courtesy of Rice

A group of Rice University student-founded companies shared $100,000 of cash prizes at an annual startup competition — and three of those winning companies are focused on sustainable solutions.

Liu Idea Lab for Innovation and Entrepreneurship's H. Albert Napier Rice Launch Challenge, hosted by Rice earlier this month, named its winners for 2024. HEXASpec, a company that's created a new material to improve heat management for the semiconductor industry, won the top prize and $50,000 cash.

Founded by Rice Ph.D. candidates Tianshu Zhai and Chen-Yang Lin, who are a part of Lilie’s 2024 Innovation Fellows program, HEXASpec is improving efficiency and sustainability within the semiconductor industry, which usually consumes millions of gallons of water used to cool data centers. According to Rice's news release, HEXASpec's "next-generation chip packaging offer 20 times higher thermal conductivity and improved protection performance, cooling the chips faster and reducing the operational surface temperature."

A few other sustainability-focused startups won prizes, too. CoFlux Purification, a company that has a technology that breaks down PFAS using a novel absorbent for chemical-free water, won second place and $25,000, as well as the Audience Choice Award, which came with an additional $2,000.

Solidec, a company that's working on a platform to produce chemicals from captured carbon, and HEXASpec won Outstanding Achievement in Climate Solutions Prizes, which came with $1,000.

The NRLC, open to Rice students, is Lilie's hallmark event. Last year's winner was fashion tech startup, Goldie.

“We are the home of everything entrepreneurship, innovation and research commercialization for the entire Rice student, faculty and alumni communities,” Kyle Judah, executive director at Lilie, says in a news release. “We’re a place for you to immerse yourself in a problem you care about, to experiment, to try and fail and keep trying and trying and trying again amongst a community of fellow rebels, coloring outside the lines of convention."

This year, the competition started with 100 student venture teams before being whittled down to the final five at the championship. The program is supported by Lilie’s mentor team, Frank Liu and the Liu Family Foundation, Rice Business, Rice’s Office of Innovation, and other donors

“The heart and soul of what we’re doing to really take it to the next level with entrepreneurship here at Rice is this fantastic team,” Peter Rodriguez, dean of Rice Business, adds. “And they’re doing an outstanding job every year, reaching further, bringing in more students. My understanding is we had more than 100 teams submit applications. It’s an extraordinarily high number. It tells you a lot about what we have at Rice and what this team has been cooking and making happen here at Rice for a long, long time.”

———

This article originally ran on InnovationMap.

Trending News