James Tour of Rice University has received funding to support his energy transition research. Photo via rice.edu

A Rice University chemist James Tour has secured a new $12 million cooperative agreement with the U.S. Army Engineer Research and Development Center on the team’s work to efficiently remove pollutants from soil.

The four-year agreement will support the team’s ongoing work on removing per- and polyfluoroalkyl substances (PFAS) from contaminated soil through its rapid electrothermal mineralization (REM) process, according to a statement from Rice.

Traditionally PFAS have been difficult to remove by conventional methods. However, Tour and the team of researchers have been developing this REM process, which heats contaminated soil to 1,000 C in seconds and converts it into nontoxic calcium fluoride efficiently while also preserving essential soil properties.

“This is a substantial improvement over previous methods, which often suffer from high energy and water consumption, limited efficiency and often require the soil to be removed,” Tour said in the statement.

The funding will help Tour and the team scale the innovative REM process to treat large volumes of soil. The team also plans to use the process to perform urban mining of electronic and industrial waste and further develop a “flash-within-flash” heating technology to synthesize materials in bulk, according to Rice.

“This research advances scientific understanding but also provides practical solutions to critical environmental challenges, promising a cleaner, safer world,” Christopher Griggs, a senior research physical scientist at the ERDC, said in the statement.

Also this month, Tour and his research team published a report in Nature Communications detailing another innovative heating technique that can remove purified active materials from lithium-ion battery waste, which can lead to a cleaner production of electric vehicles, according to Rice.

“With the surge in battery use, particularly in EVs, the need for developing sustainable recycling methods is pressing,” Tour said in a statement.

Similar to the REM process, this technique known as flash Joule heating (FJH) heats waste to 2,500 Kelvin within seconds, which allows for efficient purification through magnetic separation.

This research was also supported by the U.S. Army Corps of Engineers, as well as the Air Force Office of Scientific Research and Rice Academy Fellowship.

Last year, a fellow Rice research team earned a grant related to soil in the energy transition. Mark Torres, an assistant professor of Earth, environmental and planetary sciences; and Evan Ramos, a postdoctoral fellow in the Torres lab; were given a three-year grant from the Department of Energy to investigate the processes that allow soil to store roughly three times as much carbon as organic matter compared to Earth's atmosphere.

By analyzing samples from the East River Watershed, the team aims to understand if "Earth’s natural mechanisms of sequestering carbon to combat climate change," Torres said in a statement.

———

This article originally ran on InnovationMap.

A Rice University professor studied the Earth's carbon cycle in the Rio Madre de Dios to shed light on current climate conditions. Photo courtesy of Mark Torres/Rice University

New study from Houston research team looks at how the Earth cycles fossil carbon

analyzing earth

Carbon cycles through Earth, its inhabitants, and its atmosphere on a regular basis, but not much research has been done on that process and qualifying it — until now.

In a recent study of a river system extending from the Peruvian Andes to the Amazon floodplains, Rice University’s Mark Torres and collaborators from five institutions proved that that high rates of carbon breakdown persist from mountaintop to floodplain.

“The purpose of this research was to quantify the rate at which Earth naturally releases carbon dioxide into the atmosphere and find out whether this process varies across different geographic locations,” Torres says in a news release.

Torres published his findings in a study published in PNAS, explaining how they used rhenium — a silvery-gray, heavy transition metal — as a proxy for carbon. The research into the Earth’s natural, pre-anthropogenic carbon cycle stands to benefit humanity by providing valuable insight to current climate challenges.

“This research used a newly-developed technique pioneered by Robert Hilton and Mathieu Dellinger that relies on a trace element — rhenium — that’s incorporated in fossil organic matter,” Torres says. “As plankton die and sink to the bottom of the ocean, that dead carbon becomes chemically reactive in a way that adds rhenium to it.”

The research was done in the Rio Madre de Dios basin and supported by funding from a European Research Council Starting Grant, the European Union COFUND/Durham Junior Research Fellowship, and the National Science Foundation.

“I’m very excited about this tool,” Torres said. “Rice students have deployed this same method in our lab here, so now we can make this kind of measurement and apply it at other sites. In fact, as part of current research funded by the National Science Foundation, we are applying this technique in Southern California to learn how tectonics and climate influence the breakdown of fossil carbon.”

Torres also received a three-year grant from the Department of Energy to study soil for carbon storage earlier this year.

Two Rice University researchers just received DOE funding for carbon storage research. Photo by Gustavo Raskosky/Rice University

Research team lands DOE grant to investigate carbon storage in soil

planting climate change impact

Two researchers at Rice University are digging into how soil is formed with hopes to better understand carbon storage and potential new methods for combating climate change.

Backed by a three-year grant from the Department of Energy, the research is led by Mark Torres, an assistant professor of Earth, environmental and planetary sciences; and Evan Ramos, a postdoctoral fellow in the Torres lab. Co-investigators include professors and scientists with the Brown University, University of Massachusetts Amherst and Lawrence Berkeley National Laboratory.

According to a release from Rice, the team aims to investigate the processes that allow soil to store roughly three times as much carbon as organic matter compared to Earth's atmosphere.

“Maybe there’s a way to harness Earth’s natural mechanisms of sequestering carbon to combat climate change,” Torres said in a statement. “But to do that, we first have to understand how soils actually work.”

The team will analyze samples collected from different areas of the East River watershed in Colorado. Prior research has shown that rivers have been great resources for investigating chemical reactions that have taken place as soil is formed. Additionally, research supports that "clay plays a role in storing carbon derived from organic sources," according to Rice.

"We want to know when and how clay minerals form because they’re these big, platy, flat minerals with a high surface area that basically shield the organic carbon in the soil," Ramos said in the statement. "We think they protect that organic carbon from breakdown and allow it to grow in abundance.”

Additionally, the researchers plan to create a model that better quantifies the stabilization of organic carbon over time. According to Torres, the model could provide a basis for predicting carbon dioxide changes in Earth's atmosphere.

"We’re trying to understand what keeps carbon in soils, so we can get better at factoring in their role in climate models and render predictions of carbon dioxide changes in the atmosphere more detailed and accurate,” Torres explained in the statement.

The DOE and Rice have partnered on a number of projects related to the energy transition in recent months. Last week, Rice announced that it would host the Carbon Management Community Summit this fall, sponsored by the DOE, and in partnership with the city of Houston and climate change-focused multimedia company Climate Now.

In July the DOE announced $100 million in funding for its SCALEUP program at an event for more than 100 energy innovators at the university.

Rice also recently opened its 250,000-square-foot Ralph S. O’Connor Building for Engineering and Science. The state-of-the-art facility is the new home for four key research areas at Rice: advanced materials, quantum science and computing, urban research and innovation, and the energy transition.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Movers and shakers: Top executive moves in Houston energy transition of 2024

year in review

Editor's note: As the year comes to a close, EnergyCapital is looking back at the year's top stories in Houston energy transition. From new board seats to internal promotions, this year marked a big one for some of Houston's energy leaders. Here were the top five most-read articles covering the mover and shaker news of 2024 — be sure to click through to read the full story.

Growing Houston biotech company expands leadership as it commercializes sustainable products

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos. Continue reading.

California geothermal co. grows C-suite, grows presence in Houston

XGS has leased 10,000 square feet of office space in Houston. Photo via Getty Images

A geothermal company with its headquarters in Palo Alto, California, has named new members of its C-suite and, at the same time, has expanded its operational footprint in Houston.

XGS Energy promoted Axel-Pierre Bois to CTO and Lucy Darago to chief commercial officer. Darago is based in Austin, and Bois, from France, lists his role as based in Houston on LinkedIn. Both have worked at XGS since February of last year.

“Axel and Lucy’s proven operational excellence and technical knowledge has helped propel XGS forward as we enter our next phase of growth,” Josh Prueher, CEO of XGS Energy, says in a news release. “I’m thrilled to have them both join XGS’ C-suite and have their support as we continue to grow our team, further advance our next-generation geothermal technology, and invest in our multi-gigawatt project pipeline.” Continue reading.

CenterPoint names 40-year industry veteran as exec for emergency response

Don Daigler will be tasked to lead CenterPoint Energy's yearly work in preparation for, response to and recovery from all emergencies, which includes both natural disasters and man-made events. Photo via CenterPoint Energy/LinkedIn

CenterPoint Energy announced the hiring of industry veteran Don Daigler as the new senior vice president of CenterPoint’s Emergency Preparedness and Response.

Daigler will be tasked to lead the company’s yearly work in preparation for, response to and recovery from all emergencies, which includes both natural disasters and man-made events. Daigler and his team will coordinate with all public safety partners.

“I’m pleased to join CenterPoint Energy and lead its Emergency Preparedness and Response team to transform how we prepare, mitigate and respond to the impacts of hurricanes, extreme weather and other emergencies,” Daigler says in a news release. ”The year-round work of our team will help position CenterPoint to deliver the service our customers expect and deserve before, during and after emergencies when the need is greatest.” Continue reading.

Houston private equity professional tapped to lead growth development at firm focused on decarbonization

Climate Investment announced Patrick Yip will lead the firm's growth investment strategy as managing director, head of growth. Photo via LinkedIn

A London-based energy transition investment firm has named a new Houston-based leader.

Climate Investment announced Patrick Yip will lead the firm's growth investment strategy as managing director, head of growth. In his new role, he will oversee the development of CI’s growth-stage portfolio, including deal sourcing, operational function of strategy, and working with the team that manages the firm's early-stage Catalyst program. He reports to the CEO, Pratima Rangarajan.

“We are excited to welcome Patrick to Climate Investment,” Rangarajan says in a news release. “The decarbonization investment opportunity continues to grow rapidly, and Patrick’s extensive experience will help us capitalize on that. He will also provide leadership and develop the market partnerships that will drive our growth investment strategy forward, playing a key role in supporting portfolio market adoption and accelerating the next stage of development for CI.” Continue reading.

Firm hires top Houston-based energy banker to grow energy transition team

Top Houston banker Stephen Trauber has joined publicly traded investment bank Moelis & Co. Image via Shutterstock

Houston energy dealmaker Stephen Trauber has been tapped as chairman and global head of the energy and clean technology business at publicly traded investment bank Moelis & Co.

In 2010, The Wall Street Journalcalled Trauber “one of the best-connected energy bankers in Houston.”

Trauber comes to New York City-based Moelis from Citi, where he recently retired as vice chairman and global co-head of natural resources and clean energy transition. Before that, he was vice chairman and global head of energy at UBS Investment Bank, where he worked with Ken Moelis, who’s now chairman and CEO of Moelis. Continue reading.

Houston expert: Is China leading the global energy transition?

guest column

China plays a big role in the global push to shift from fossil fuels to cleaner energy. It's the world's largest carbon emitter but also a global leader in solar, wind, and battery technologies. This combination makes China a critical player in the energy transition. China may not be doing enough to reduce its own greenhouse gas emissions, but it is leading the way in producing low-cost, low-carbon solutions.

Why Materials Matter

One of the biggest challenges in switching to alternative energy is the need for specific materials like lithium, cobalt, and rare earth metals. These are essential for making things like solar panels, wind turbines, and batteries. In her report, "Minerals and Materials Challenges for Our Energy Future(s): Dateline 2024," Michelle Michot Foss emphasizes the critical role of materials in energy transitions:

"Energy transitions require materials transitions; sustainability is multifaceted; and innovation and growth will shape the future of energy and economies."

China controls much of the supply and processing of these materials. For example, it produces most of the world’s rare earth metals and has the largest capacity for making batteries. This gives China a big advantage but also creates risks. Michot Foss points out:

"China’s command over material supply chains presents both opportunities and risks. On one hand, it enables rapid scaling of technologies like wind, solar, and batteries. On the other hand, it exposes the global market to potential vulnerabilities, as geopolitical tensions and trade barriers could disrupt these critical flows."

China’s strategy for dominating alternative energy materials is also closely tied to its national security interests. By securing control over these critical supply chains, China not only hopes to guarantee its own energy independence but also gains significant geopolitical leverage.

“Is China’s leadership strategic or accidental? China’s dominance is a consequence of enormous excess materials supply chain and manufacturing capacity. A flood of exports are undermining materials and “green tech” businesses everywhere. It heightens vulnerabilities and geopolitical tensions. How do we in the US find our own comparative advantage?” Michot Foss notes that advanced materials should be a priority for US responses, especially as attention shifts to nuclear energy possibilities and as carbon capture and hydrogen initiatives play out.

Balancing Energy Growth and Emissions

GabrielCollins, in his report "Reality Is Setting In: Asian Countries to Lead Transitions in 2024 and 2025," offers another perspective. He focuses on how developing nations, especially in Asia, are shaping the energy transition:

"The developing world, including many countries in Asia, increasingly demand that developed nations’ policy advocacy stop treating the economic and environmental needs of the developing world as an afterthought."

Collins highlights China’s dual strategy: investing heavily in renewables while still using coal to meet its growing energy demand. He explains:

"China, which now has installed a terawatt combined of wind and solar capacity while still ramping up coal output and moving to dominate EV and renewables supply chains and manufacturing."

This strategy appeals to other developing nations, which face similar challenges of balancing energy needs with environmental goals while fostering economic growth and expanding industries.

The Numbers: Progress and Challenges

McKinsey’s Global Energy Perspective 2024 provides some useful data. On the bright side, China is installing renewable energy faster than any other country. In 2023, it added over 100 gigawatts of solar capacity, a world record. Wind energy is growing quickly too, and China leads in producing electric vehicle batteries.

But McKinsey also notes the challenges. Coal still generates more than half of China’s electricity. While renewable energy is growing fast, it’s not replacing coal yet—it’s just adding to China’s total energy capacity.

McKinsey sums it up: China is leading in renewable energy deployment, but its reliance on coal highlights the slow pace of deep decarbonization. The country is transitioning, but not fast enough to meet global climate targets.

Is China Leading or Lagging?

So, is China leading the energy transition? The answer is: it depends on how you define “leading.”

If leadership means building more solar and wind farms, dominating the materials supply chain, and being the leading supplier of low-carbon solutions, then yes, China is ahead of everyone else. But if leadership means cutting their own emissions quickly and shifting away from fossil fuels, China still has work to do.

China’s approach is practical. It’s making progress where it can—like scaling up renewables—but it’s also sticking with coal to ensure its economy and energy needs stay stable.

Final Thoughts

China is both a leader and a work in progress when it comes to the energy transition. Its achievements in renewable energy are impressive, but its reliance on coal and the challenges of balancing growth with sustainability show there’s still a long road ahead.

China’s story reminds us that the energy transition isn’t a straight path. It’s a journey full of trade-offs and complexities, and China’s experience reflects the challenges the whole world faces. At the same time, its focus on national security through energy independence and industrial strategy to build low-carbon export businesses signals a strategic move that is reshaping global power dynamics, leaving the United States and other nations to reevaluate their energy policies.

———

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn on December 5, 2024.


Robotics co. with growing Houston presence closes series B

money moves

Houston- and Boston-based Square Robot Inc. closed a series B round of funding last month.

The advanced submersible robotics company raised $13 million, according to Tracxn.com, and says it will put the funds toward international expansion.

"This Series B round, our largest to date, enables us to accelerate our growth plans and meet the surging global demand for our services,” David Lamont, CEO, said in a statement.

The company aims to establish a permanent presence in Europe and the Middle East and grow its delivery services to reach four more countries and one new continent in Q1 2025.

Additionally, Square Robot plans to release a new robot early next year. The robot is expected to be able to operate in extreme temperatures up to 60 C. The company will also introduce its first AI-enabled tools to improve data collection.

Square Robot launched its Houston office in 2019. Its autonomous, submersible robots are used for storage tank inspections and eliminate the need for humans to enter dangerous and toxic environments.

The company was one of the first group of finalists for the Houston Innovation Awards' Scaleup of the Year, which honors a Bayou City company that's seen impressive growth in 2024. Click here to read more about the company's growth.